Пример #1
0
def test_abs_of_top_leveldata(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = abs(df.met)
    a = make_local(seq)
    assert a is not None
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.met()").Select(
            "lambda e2: abs(e2)").AsROOTTTree("file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #2
0
def test_numpy_abs(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    import numpy as np
    seq = np.abs(df.met)
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.met()").Select(
            "lambda e2: abs(e2)").AsROOTTTree("file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #3
0
def test_count_of_objects(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets.Count()
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e2: e2.Count()").AsROOTTTree("file.root", "treeme",
                                                 ['col1']))
    assert clean_linq(selection) == txt
Пример #4
0
def test_first_at_object_level(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets.First().pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e5: e5.jets()").Select(
            "lambda e7: e7.First()").Select("lambda e8: e8.pt()").AsROOTTTree(
                "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #5
0
def test_jet_pt_filter_pts_gt(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets.pt[df.jets.pt > 30.0]
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e5: e5.Select(lambda e2: e2.pt())").Select(
                "lambda e6: e6.Where(lambda e3: e3 > 30.0)").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #6
0
def test_pt_sub(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets.pt - 1000.0
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e4: e4.Select(lambda e2: e2.pt())").Select(
                "lambda e5: e5.Select(lambda e3: e3 - 1000.0)").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #7
0
def test_collect_xaod_call_with_number(servicex_ds):
    'Do this with the actual call we need in ATLAS'
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.Jets(22.0).pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.Jets(22.0)").Select(
            "lambda e3: e3.Select(lambda e2: e2.pt())").AsROOTTTree(
                "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #8
0
def test_count_at_eventLevel(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df[df.jets.Count() == 2].jets.pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Where("lambda e4: e4.jets().Count() == 2").Select(
            "lambda e5: e5.jets()").Select(
                "lambda e7: e7.Select(lambda e6: e6.pt())").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #9
0
def test_filter_and_abs(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets[(df.jets.pt > 30.0) & (abs(df.jets.eta) < 2.5)].pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e10: e10.Where(lambda e8: (e8.pt() > 30.0) and (abs(e8.eta()) < 2.5))"
        ).Select("lambda e11: e11.Select(lambda e9: e9.pt())").AsROOTTTree(
            "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #10
0
def test_binop_in_filter(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets[(df.jets.pt / 1000.0) > 30].pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e7: e7.Where(lambda e5: e5.pt()/1000.0 > 30)").Select(
                "lambda e8: e8.Select(lambda e6: e6.pt())").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #11
0
def test_filter_not(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets[~(df.jets.pt > 30.0)].pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e9: e9.Where(lambda e7: not (e7.pt() > 30.0))").Select(
                "lambda e10: e10.Select(lambda e8: e8.pt())").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #12
0
def test_filter_jet_by_attributes(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets[df.jets.hasProdVtx & df.jets.hasDecayVtx].pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e7: e7.Where(lambda e2: e2.hasProdVtx() and e2.hasDecayVtx())"
        ).Select("lambda e8: e8.Select(lambda e6: e6.pt())").AsROOTTTree(
            "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #13
0
def test_filter_and_divide_with_call(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets().pt[df.jets().pt > 30.0] / 1000.0
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").
        Select("lambda e6: e6.Select(lambda e2: e2.pt())").Select(
            "lambda e7: e7.Where(lambda e3: e3 > 30.0)").Select(
                "lambda e8: e8.Select(lambda e5: e5 / 1000.0)").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #14
0
def test_collect_pts_as_call(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets().pt()
    a = make_local(seq)
    assert a is not None
    assert len(a) == 283458
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e3: e3.Select(lambda e2: e2.pt())").AsROOTTTree(
                "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #15
0
def test_jet_pt_filter_pts_ne(servicex_ds):
    'Do this with the actual call we need in ATLAS'
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets.pt[df.jets.pt != 30.0]
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e5: e5.Select(lambda e2: e2.pt())").Select(
                "lambda e6: e6.Where(lambda e4: e4 != 30.0)").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #16
0
def test_abs_of_data_with_calls(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = abs(df.jets().pt())
    a = make_local(seq)
    assert a is not None
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e4: e4.Select(lambda e2: e2.pt())").Select(
                "lambda e5: e5.Select(lambda e3: abs(e3))").AsROOTTTree(
                    "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #17
0
def test_filter_chain(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq1 = df.jets[df.jets.pt > 30.0]
    seq = seq1[seq1.eta < 2.4].pt
    make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.jets()").Select(
            "lambda e6: e6.Where(lambda e3: e3.pt() > 30.0)").Select(
                "lambda e7: e7.Where(lambda e4: e4.eta() < 2.4)").Select(
                    "lambda e5: e5.Select(lambda e2: e2.pt())").AsROOTTTree(
                        "file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #18
0
def test_multi_object_monads(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)

    mc_part = df.TruthParticles('TruthParticles')
    eles = df.Electrons('Electrons')

    from dataframe_expressions import user_func
    @user_func
    def DeltaR(p1_eta: float) -> float:
        assert False

    def near(mcs, e):
        'Return all particles in mcs that are DR less than 0.5'
        return mcs[lambda m: DeltaR(e.eta()) < 0.5]

    # This gives us a list of events, and in each event, good electrons,
    # and then for each good electron, all good MC electrons that are near by
    eles['near_mcs'] = lambda reco_e: near(mc_part, reco_e)
    eles['hasMC'] = lambda e: e.near_mcs.Count() > 0

    make_local(eles[eles.hasMC].pt)

    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f
        .Select("lambda e1: (e1.Electrons('Electrons'), e1)")
        .Select("lambda e2: e2[0].Where(lambda e3: "
                "e2[1]"
                ".TruthParticles('TruthParticles')"
                ".Where(lambda e6: DeltaR(e3.eta()) < 0.5).Count() > 0)")
        .Select("lambda e4: e4.Select(lambda e5: e5.pt())")
        .AsROOTTTree("file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #19
0
def test_multi_object_call_with_same_thing_twice(servicex_ds):
    # df.Electrons appears inside a call that has unwrapped the sequence.
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)

    mc_part = df.TruthParticles('TruthParticles')
    eles = df.Electrons('Electrons')

    # This gives us a list of events, and in each event, good electrons, and then for each
    # good electron, all good MC electrons that are near by
    eles['near_mcs'] = lambda reco_e: mc_part
    eles['hasMC'] = lambda e: e.near_mcs.Count() > 0

    make_local(eles[~eles.hasMC].pt)

    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f
        .Select("lambda e1: (e1.Electrons('Electrons'), e1)")
        .Select("lambda e2: e2[0].Where(lambda e3: "
                "not e2[1]"
                ".TruthParticles('TruthParticles')"
                ".Count() > 0)")
        .Select("lambda e4: e4.Select(lambda e5: e5.pt())")
        .AsROOTTTree("file.root", "treeme", ['col1']))
    assert clean_linq(selection) == txt
Пример #20
0
def test_copy_xaod_table_1(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    x1 = xaod_table(f)
    import copy
    x2 = copy.deepcopy(x1)
    assert x1 is not x2
    assert isinstance(x1, xaod_table)
Пример #21
0
def test_find_root_no_root(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    a = ast_DataFrame(df)

    r = _find_root_expr(ast.Num(n=10, ctx=ast.Load()), a)
    assert r is None
Пример #22
0
def test_copy_xaod_table_2(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    x1 = xaod_table(f).jets.pt
    import copy
    x2 = copy.deepcopy(x1)
    assert x1 is not x2
    assert isinstance(x1, DataFrame)
Пример #23
0
def test_count_of_events(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.Count()
    with pytest.raises(Exception) as e:
        make_local(seq)

    assert 'Count' in str(e.value)
Пример #24
0
def test_numpy_histogram(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = histogram(df.met)
    h = make_local(seq)
    selection = extract_selection(servicex_ds)
    txt = translate_linq(
        f.Select("lambda e1: e1.met()").AsROOTTTree("file.root", "treeme",
                                                    ['col1']))
    assert clean_linq(selection) == txt

    assert h is not None
    assert isinstance(h, Tuple)
    assert len(h) == 2

    contents = h[0]
    assert len(contents) == 10
Пример #25
0
def test_find_root_ast_df_simple(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    a = ast_DataFrame(df)

    r = _find_root_expr(a, ast.Num(n=10, ctx=ast.Load()))
    assert r is not None
    assert r is a
Пример #26
0
def test_find_nested_dataframes(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets[df.jets.pt > 30].pt
    expr, _ = render(seq)

    found_df = _find_dataframes(expr)
    assert isinstance(found_df, ast_DataFrame)
    assert found_df.dataframe is df
Пример #27
0
def test_find_root_in_function(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    a = ast_DataFrame(df)

    attr = ast.Attribute(value=a, attr='jets', ctx=ast.Load())
    call = ast.Call(func=ast.Name(id='sin'), args=[attr], keywords=None)

    r = _find_root_expr(call, attr)
    assert r is attr
Пример #28
0
def test_find_root_ast_df_nested(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    a = ast_DataFrame(df)

    attr = ast.Attribute(value=a, attr='jets', ctx=ast.Load())

    r = _find_root_expr(attr, ast.Num(n=10, ctx=ast.Load()))
    assert r is not None
    assert r is a
Пример #29
0
def test_make_local_twice_filter(servicex_ds):
    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    seq = df.jets[df.jets.pt > 30].pt
    make_local(seq)
    json_1 = clean_linq(extract_selection(servicex_ds))

    make_local(seq)
    json_2 = clean_linq(extract_selection(servicex_ds))

    assert json_1 == json_2
Пример #30
0
def test_user_function_with_implied(servicex_ds):

    @user_func
    def tns(e1: float) -> float:
        assert False, 'this is a fake function and should never be called'

    f = ServiceXDatasetSource(servicex_ds)
    df = xaod_table(f)
    with pytest.raises(Exception):
        seq = tns(df.jets.pt)
        make_local(seq)