Пример #1
0
def control_dictionaries_creator():
    """
    Create the control dictionary containing the values corresponding to the score of bp and ppt for every control exons
    """
    exon_class.set_debug(0)
    dir_path = os.path.dirname(os.path.realpath(__file__))
    fasterdb = os.path.dirname(os.path.realpath(__file__)).replace(
        "src/minimum_free_energy", "data/fasterDB_lite.db")
    seddb = os.path.dirname(os.path.realpath(__file__)).replace(
        "src/minimum_free_energy", "data/sed.db")
    ctrl_dir = dir_path + "/control_dictionaries/"
    cnx = sqlite3.connect(fasterdb)
    cnx_sed = sqlite3.connect(seddb)
    if not os.path.isdir(ctrl_dir):
        os.mkdir(ctrl_dir)
    exon_type = "CCE"
    exon2remove = union_dataset_function.get_exon_regulated_by_sf(
        cnx_sed, "down")
    ctrl_exon_list = get_control_exon_information(cnx, exon_type, exon2remove)
    print("retrieving upstream intron sequence")
    list_exon = [
        exon_class.ExonClass(cnx, exon[0], exon[1], exon[2])
        for exon in ctrl_exon_list
    ]
    print("calculating mfe")
    mfe_list_3ss, mfe_list_5ss = function.mfe_calculator(list_exon)
    cur_file = open(ctrl_dir + exon_type + "_mfe.py", "w")
    cur_file.write("mfe_3ss=" + str(mfe_list_3ss) + "\n")
    cur_file.write("mfe_5ss=" + str(mfe_list_5ss) + "\n")
    cur_file.close()
Пример #2
0
def computing_mfe(cnx, df, output):
    """
    Add a column mfe 5'ss to the existing dataframe.

    :param cnx: (sqlite3 dataframe object) connection to fasterdb
    :param df: (pandas dataframe) table of exons
    :param output: (str) files were the mfe results will be created
    :return:  (pandas dataframe) table of exons with mfe data
    """
    exon_class_list = []
    exon_list = df[["gene_name", "gene_id", "pos"]].values
    for exon in exon_list:
        exon_class_list.append(
            exon_class.ExonClass(cnx, exon[0], exon[1], exon[2]))
    mfe_3ss, mfe_5ss = function.mfe_calculator(exon_class_list,
                                               output,
                                               ps=True)
    df["mfe_5ss"] = mfe_5ss
    return df
def get_mfe_score_list(output, exon_list, name_list):
    """
    Calculate or retrieve mfe score
    :param output: (string) path where the result will be stored or retrieved
    :param exon_list: (list of ExonClass object) List of exons
    :param name_list: (string) the name of the exons list
    :return: (2 list of floats) list of bp score and list of ppt score
    """
    name_store_file = "%s%s_mfe_score.py" % (output, name_list)
    print(name_store_file)
    if not os.path.isfile(name_store_file):
        print("Calculating mfe score using RNAfold")
        mfe_3ss, mfe_5ss = function.mfe_calculator(exon_list)
        with open(name_store_file, "w") as outfile:
            outfile.write("mfe_3ss=" + str(mfe_3ss) + "\n")
            outfile.write("mfe_5ss=" + str(mfe_5ss) + "\n")
    else:
        print("recovering mfe score already stored in %s" % name_store_file)
        sys.path.insert(0, output)
        stored = __import__("%s_mfe_score" % name_list)
        mfe_3ss = stored.mfe_3ss
        mfe_5ss = stored.mfe_5ss
    return mfe_3ss, mfe_5ss
def get_exon_info(cnx, sedb, fasterdb_file, exon_list, u1_exons, u2_exons):
    """

    :param cnx: (sqlite3 connect object) connexion to fasterdb
    :param fasterdb_file: (str) an sqlite3 database file
    :param sedb: (str) path to sed database
    :param exon_list:  (list of 2 int) list of exons
    :param u1_exons: (list of list of 2 int) list of exons regulated by U1
    :param u2_exons: (list of list of 2 int) list of exons regulated by U2
    :return: (list of list of value) list of data
    """
    dic = {-1: "-", 1: "+"}
    cursor = cnx.cursor()
    cursor.execute("ATTACH DATABASE ? as sed", (sedb, ))
    cursor.execute("ATTACH DATABASE ? as fasterdb", (fasterdb_file, ))
    if exon_list is None:
        query = """
                SELECT t1.id_gene, t1.pos_on_gene, t1.chromosome, 
                       t1.start_on_chromosome, t1.end_on_chromosome, 
                       t2.strand, t3.iupac_exon, t3.upstream_intron_size,
                       t3.downstream_intron_size
                FROM fasterdb.exons as t1, fasterdb.genes as t2, sed.sed as t3
                WHERE t3.gene_id =  t1.id_gene
                AND   t3.exon_pos = t1.pos_on_gene
                AND   t1.id_gene = t2.id
                AND   t3.exon_type LIKE '%CCE%'
                """
        cursor.execute(query)
        res = cursor.fetchall()
        new_res = []
        for exon in res:
            exon = list(exon)
            exon[3] = int(exon[3]) - 1
            cexon = exon_class_bp.ExonClass(cnx, str(exon[0]), exon[0],
                                            exon[1])
            exon_data = bp_ppt_calculator([cexon])
            mexon = exon_class.ExonClass(cnx, str(exon[0]), exon[0], exon[1])
            mfe_5ss, mfe_3ss = mfe_calculator([mexon])
            stretch = catch_index_error(stretch_counter([cexon])["T"], 0)
            dic_info = {
                "GC_content": exon[6].split(";")[4],
                "upstream_intron_size": exon[7],
                "downstream_intron_size": exon[8],
                "UNA_count": catch_index_error(exon_data[8], 0),
                "Hbound_count": catch_index_error(exon_data[6], 0),
                "good_bp": catch_index_error(exon_data[3], 0),
                "MFE_5SS": catch_index_error(mfe_5ss, 0),
                "MFE_3SS": catch_index_error(mfe_3ss, 0),
                "T_stretch": stretch,
                "U1-regulated": is_in(exon[0:2], u1_exons),
                "U2-regulated": is_in(exon[0:2], u2_exons),
            }

            new_res.append(exon[2:5] + ["%s_%s" % (exon[0], exon[1])] + \
                    ["0", dic[exon[5]]] + [str(dic_info)])
        return new_res
    count = 0
    tot = len(exon_list)
    result = []
    for exon in exon_list:
        count += 1
        query = """
                SELECT t1.chromosome, t1.start_on_chromosome, 
                       t1.end_on_chromosome, t2.strand, t3.iupac_exon,
                       t3.upstream_intron_size, t3.downstream_intron_size
                FROM fasterdb.exons as t1, fasterdb.genes as t2, sed.sed as t3
                WHERE t3.gene_id =  t1.id_gene
                AND   t3.exon_pos = t1.pos_on_gene
                AND   t1.id_gene = t2.id
                AND   t3.gene_id = %s
                AND   t3.exon_pos = %s
                """ % (exon[0], exon[1])
        cursor.execute(query)
        res = cursor.fetchall()
        if len(res) > 1:
            raise IndexError("Error only one row shoud be return for %s" %
                             exon)
        tmp = list(res[0])
        tmp[1] = int(tmp[1]) - 1
        cexon = exon_class_bp.ExonClass(cnx, str(exon[0]), exon[0], exon[1])
        exon_data = bp_ppt_calculator([cexon])
        mexon = exon_class.ExonClass(cnx, str(exon[0]), exon[0], exon[1])
        mfe_5ss, mfe_3ss = mfe_calculator([mexon])
        stretch = catch_index_error(stretch_counter([cexon])["T"], 0)
        dic_info = {
            "GC_content": tmp[4].split(";")[4],
            "upstream_intron_size": tmp[5],
            "downstream_intron_size": tmp[6],
            "UNA_count": catch_index_error(exon_data[8], 0),
            "Hbound_count": catch_index_error(exon_data[6], 0),
            "good_bp": catch_index_error(exon_data[3], 0),
            "MFE_5SS": catch_index_error(mfe_5ss, 0),
            "MFE_3SS": catch_index_error(mfe_3ss, 0),
            "T_stretch": stretch,
            "U1-regulated": is_in(exon[0:2], u1_exons),
            "U2-regulated": is_in(exon[0:2], u2_exons),
        }
        exon_data = tmp[0:3] + ["%s_%s" % (exon[0], exon[1])] + \
                    ["0", dic[tmp[3]]] + [str(dic_info)]
        result.append(exon_data)
        sys.stdout.write("Processing %s/%s\t\t\t\r" % (count, tot))
        sys.stdout.flush()
    return result