Пример #1
0
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.
        Arguments are same as that of __init__.
        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
            transforms.append(
                Lambda(
                    lambda img: F.adjust_brightness(img, brightness_factor)))

        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
            transforms.append(
                Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
            transforms.append(
                Lambda(
                    lambda img: F.adjust_saturation(img, saturation_factor)))

        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
            transforms.append(
                Lambda(lambda img: F.adjust_hue(img, hue_factor)))

        random.shuffle(transforms)
        transform = Compose(transforms)

        return transform
Пример #2
0
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
        if brightness > 0:
            brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness)
            transforms.append(Lambda(lambda sample: F.adjust_brightness(sample, brightness_factor)))

        if contrast > 0:
            contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
            transforms.append(Lambda(lambda sample: F.adjust_contrast(sample, contrast_factor)))

        if saturation > 0:
            saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation)
            transforms.append(Lambda(lambda sample: F.adjust_saturation(sample, saturation_factor)))

        if hue > 0:
            hue_factor = np.random.uniform(-hue, hue)
            transforms.append(Lambda(lambda sample: F.adjust_hue(sample, hue_factor)))

        np.random.shuffle(transforms)
        transform = Compose(transforms)

        return transform
Пример #3
0
    def __call__(self, img):
        transforms = []

        if self.brightness > 0:
            brightness_factor = random.uniform(max(0, 1 - self.brightness),
                                               1 + self.brightness)
            transforms.append(
                Lambda(
                    lambda img: F.adjust_brightness(img, brightness_factor)))

        if self.contrast > 0:
            contrast_factor = random.uniform(max(0, 1 - self.contrast),
                                             1 + self.contrast)
            transforms.append(
                Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

        if self.saturation > 0:
            saturation_factor = random.uniform(max(0, 1 - self.saturation),
                                               1 + self.saturation)
            transforms.append(
                Lambda(
                    lambda img: F.adjust_saturation(img, saturation_factor)))

        if self.hue > 0:
            hue_factor = random.uniform(-self.hue, self.hue)
            transforms.append(
                Lambda(lambda img: F.adjust_hue(img, hue_factor)))

        random.shuffle(transforms)
        transform = Compose(transforms)

        return transform(img)