Пример #1
0
elif pc == "lio":
    src = "/mnt/wd/chalearn/preproc"
    res_dir_ = "/home/lpigou/chalearn_wudi/try"

loader = DataLoader(src,
                    tr.batch_size)  # Lio changed it to read from HDF5 files

####################################################################
####################################################################
print "\n%s\n\tbuilding\n%s" % (('-' * 30, ) * 2)
####################################################################
####################################################################

idx_mini = T.lscalar(name="idx_mini")  # minibatch index
idx_micro = T.lscalar(name="idx_micro")  # microbatch index
x = ndtensor(len(tr.in_shape))(name='x')  # video input
x_ = _shared(empty(tr.in_shape))
y_ = _shared(empty((tr.batch_size, )))
y_int32 = T.cast(y_, 'int32')
y = T.ivector(name='y')  # labels

conv_shapes = []
for i in xrange(net.n_stages):
    k, p, v = array(net.kernels[i]), array(net.pools[i]), array(
        tr.video_shapes[i])
    conv_s = tuple(v - k + 1)
    conv_shapes.append(conv_s)
    tr.video_shapes.append(tuple((v - k + 1) / p))
    print "stage", i
    print "  conv", tr.video_shapes[i], "->", conv_s
    print "  pool", conv_s, "->", tr.video_shapes[i + 1], "x", net.maps[i + 1]
layers = []  # all architecture layers
mini_updates = []
micro_updates = []
last_upd = []
update = []

# shared variables
learning_rate = shared(float32(lr.init))
if use.mom:
    momentum = shared(float32(mom.momentum))
    drop.p_vid = shared(float32(drop.p_vid_val))
    drop.p_hidden = shared(float32(drop.p_hidden_val))

idx_mini = T.lscalar(name="idx_mini")  # minibatch index
idx_micro = T.lscalar(name="idx_micro")  # microbatch index
x = ndtensor(len(tr.in_shape))(name='x')  # video input
y = T.ivector(name='y')  # labels
x_ = _shared(empty(tr.in_shape))
y_ = _shared(empty(tr.batch_size))
y_int32 = T.cast(y_, 'int32')

L1 = _shared(0)
L2 = _shared(0)

### useless fake, but DataLoader_with_skeleton_normalisation would require that
x_skeleton = ndtensor(len(tr._skeleon_in_shape))(
    name='x_skeleton')  # video input
x_skeleton_ = _shared(empty(tr._skeleon_in_shape))

# load the skeleton normalisation --Lio didn't normalise video input, but should we?
import cPickle
micro_updates = []
last_upd = []
update = []


# shared variables
learning_rate = shared(float32(lr.init))
if use.mom: 
    momentum = shared(float32(mom.momentum))
    drop.p_vid = shared(float32(drop.p_vid_val) )
    drop.p_hidden = shared(float32(drop.p_hidden_val))


idx_mini = T.lscalar(name="idx_mini") # minibatch index
idx_micro = T.lscalar(name="idx_micro") # microbatch index
x = ndtensor(len(tr.in_shape))(name = 'x') # video input
y = T.ivector(name = 'y') # labels
x_ = _shared(empty(tr.in_shape))
y_ = _shared(empty(tr.batch_size))
y_int32 = T.cast(y_,'int32')


L1 = _shared(0)
L2 = _shared(0)


### useless fake, but DataLoader_with_skeleton_normalisation would require that
x_skeleton = ndtensor(len(tr._skeleon_in_shape))(name = 'x_skeleton') # video input
x_skeleton_ = _shared(empty(tr._skeleon_in_shape))

# load the skeleton normalisation --Lio didn't normalise video input, but should we?
def build():
    use.load = True  # we load the CNN parameteres here
    x = ndtensor(len(tr.in_shape))(name='x')  # video input
    x_ = _shared(empty(tr.in_shape))

    conv_shapes = []
    for i in xrange(net.n_stages):
        k, p, v = array(net.kernels[i]), array(net.pools[i]), array(
            tr.video_shapes[i])
        conv_s = tuple(v - k + 1)
        conv_shapes.append(conv_s)
        tr.video_shapes.append(tuple((v - k + 1) / p))
        print "stage", i
        print "  conv", tr.video_shapes[i], "->", conv_s
        print "  pool", conv_s, "->", tr.video_shapes[i + 1], "x", net.maps[i +
                                                                            1]

    # number of inputs for MLP = (# maps last stage)*(# convnets)*(resulting video shape) + trajectory size
    n_in_MLP = net.maps[-1] * net.n_convnets * prod(tr.video_shapes[-1])
    print 'MLP:', n_in_MLP, "->", net.hidden, "->", net.n_class, ""

    if use.depth:
        if net.n_convnets == 2:
            out = [x[:, :, 0, :, :, :], x[:, :,
                                          1, :, :, :]]  # 2 nets: body and hand

    # build 3D ConvNet
    layers = []  # all architecture layers
    insp = []
    for stage in xrange(net.n_stages):
        for i in xrange(len(out)):  # for body and hand
            # normalization
            if use.norm and stage == 0:
                gray_norm = NormLayer(out[i][:, 0:1],
                                      method="lcn",
                                      use_divisor=use.norm_div).output
                gray_norm = std_norm(gray_norm, axis=[-3, -2, -1])
                depth_norm = var_norm(out[i][:, 1:])
                out[i] = T.concatenate([gray_norm, depth_norm], axis=1)
            elif use.norm:
                out[i] = NormLayer(out[i],
                                   method="lcn",
                                   use_divisor=use.norm_div).output
                out[i] = std_norm(out[i], axis=[-3, -2, -1])
            # convolutions
            out[i] *= net.scaler[stage][i]
            layers.append(
                ConvLayer(
                    out[i],
                    **conv_args(stage, i, batch, net, use, tr.rng,
                                tr.video_shapes)))
            out[i] = layers[-1].output
            out[i] = PoolLayer(out[i],
                               net.pools[stage],
                               method=net.pool_method).output
            if tr.inspect: insp.append(T.mean(out[i]))

    # flatten all convnets outputs
    for i in xrange(len(out)):
        out[i] = std_norm(out[i], axis=[-3, -2, -1])
    out = [out[i].flatten(2) for i in range(len(out))]
    vid_ = T.concatenate(out, axis=1)

    # dropout
    if use.drop:
        drop.p_vid = shared(float32(drop.p_vid_val))
        drop.p_hidden = shared(float32(drop.p_hidden_val))
        drop.p_vid.set_value(float32(0.))  # dont use dropout when testing
        drop.p_hidden.set_value(float32(0.))  # dont use dropout when testing
        vid_ = DropoutLayer(vid_, rng=tr.rng, p=drop.p_vid).output

    # MLP
    # ------------------------------------------------------------------------------
    # fusion
    if net.fusion == "early":
        out = vid_
        # hidden layer
        Wh, bh = load_params(use)  # This is test, wudi added this!
        layers.append(
            HiddenLayer(out,
                        W=Wh,
                        b=bh,
                        n_in=n_in_MLP,
                        n_out=net.hidden,
                        rng=tr.rng,
                        W_scale=net.W_scale[-2],
                        b_scale=net.b_scale[-2],
                        activation=relu))
        out = layers[-1].output

    if tr.inspect:
        insp = T.stack(insp[0], insp[1], insp[2], insp[3], insp[4], insp[5],
                       T.mean(out))
    else:
        insp = T.stack(0, 0)

    if use.drop: out = DropoutLayer(out, rng=tr.rng, p=drop.p_hidden).output
    #maxout
    # softmax layer
    Ws, bs = load_params(use)  # This is test, wudi added this!
    layers.append(
        LogRegr(out,
                W=Ws,
                b=bs,
                rng=tr.rng,
                activation=lin,
                n_in=net.hidden,
                W_scale=net.W_scale[-1],
                b_scale=net.b_scale[-1],
                n_out=net.n_class))
    """
    layers[-1] : softmax layer
    layers[-2] : hidden layer (video if late fusion)
    layers[-3] : hidden layer (trajectory, only if late fusion)
    """
    # prediction
    y_pred = layers[-1].y_pred
    p_y_given_x = layers[-1].p_y_given_x
    ####################################################################
    ####################################################################
    print "\n%s\n\tcompiling\n%s" % (('-' * 30, ) * 2)
    ####################################################################
    ####################################################################
    # compile functions
    # ------------------------------------------------------------------------------
    print 'compiling test_model'

    eval_model = function([], [y_pred, p_y_given_x],
                          givens={x: x_},
                          on_unused_input='ignore')

    return eval_model, x_
    def __init__(self, res_dir, load_path):

        self.layers = []  # only contain the layers from fusion
        self.insp_mean = []  # inspection for each layer mean activation
        self.insp_std = []  # inspection for each layer std activation
        self.params = []  # parameter list
        self.idx_mini = T.lscalar(name="idx_mini")  # minibatch index
        self.idx_micro = T.lscalar(name="idx_micro")  # microbatch index

        # symbolic variables
        self.x = ndtensor(len(tr.in_shape))(name='x')  # video input
        self.y = T.ivector(name='y')  # labels
        # symbolic variables
        self.x_skeleton = ndtensor(len(tr._skeleon_in_shape))(
            name='x_skeleton')  # video input

        if use.drop:
            drop.p_vid = shared(float32(drop.p_vid_val))
            drop.p_hidden = shared(float32(drop.p_hidden_val))
        video_cnn = conv3d_chalearn(self.x, use, lr, batch, net, reg, drop, mom, \
                                             tr, res_dir, load_path)

        dbn = GRBM_DBN(numpy_rng=random.RandomState(123), n_ins=891, \
                hidden_layers_sizes=[2000, 2000, 1000], n_outs=101, input_x=self.x_skeleton, label=self.y )
        # we load the pretrained DBN skeleton parameteres here
        if use.load == True:
            dbn.load(os.path.join(load_path, 'dbn_2015-06-19-11-34-24.npy'))

        #####################################################################
        # fuse the ConvNet output with skeleton output  -- need to change here
        ######################################################################
        out = T.concatenate([video_cnn.out, dbn.sigmoid_layers[-1].output],
                            axis=1)

        #####################################################################
        # wudi add the mean and standard deviation of the activation values to exam the neural net
        # Reference: Understanding the difficulty of training deep feedforward neural networks, Xavier Glorot, Yoshua Bengio
        #####################################################################
        insp_mean_list = []
        insp_std_list = []
        insp_mean_list.extend(dbn.out_mean)
        insp_mean_list.extend(video_cnn.insp_mean)
        insp_std_list.extend(dbn.out_std)
        insp_std_list.extend(video_cnn.insp_std)

        ######################################################################
        #MLP layer
        self.layers.append(
            HiddenLayer(out,
                        n_in=net.hidden,
                        n_out=net.hidden,
                        rng=tr.rng,
                        W_scale=net.W_scale[-1],
                        b_scale=net.b_scale[-1],
                        activation=net.activation))
        out = self.layers[-1].output

        if tr.inspect:
            insp_mean_list.extend([T.mean(out)])
            insp_std_list.extend([T.std(out)])
        self.insp_mean = T.stacklists(insp_mean_list)
        self.insp_std = T.stacklists(insp_std_list)

        if use.drop:
            out = DropoutLayer(out, rng=tr.rng, p=drop.p_hidden).output

        ######################################################################
        # softmax layer
        self.layers.append(
            LogRegr(out,
                    rng=tr.rng,
                    n_in=net.hidden,
                    W_scale=net.W_scale[-1],
                    b_scale=net.b_scale[-1],
                    n_out=net.n_class))

        self.p_y_given_x = self.layers[-1].p_y_given_x
        ######################################################################
        # cost function
        self.cost = self.layers[-1].negative_log_likelihood(self.y)

        # function computing the number of errors
        self.errors = self.layers[-1].errors(self.y)

        # parameter list
        for layer in video_cnn.layers:
            self.params.extend(layer.params)

        # pre-trained dbn parameter last layer  (W, b) doesn't need to incorporate into the params
        # for calculating the gradient
        self.params.extend(dbn.params[:-2])

        # MLP hidden layer params
        self.params.extend(self.layers[-2].params)
        # softmax layer params
        self.params.extend(self.layers[-1].params)
        # number of inputs for MLP = (# maps last stage)*(# convnets)*(resulting video shape) + trajectory size
        print 'MLP:', video_cnn.n_in_MLP, "->", net.hidden_penultimate, "+", net.hidden_traj, '->', \
           net.hidden, '->', net.hidden, '->', net.n_class, ""

        return
def build():
    use.load = True  # we load the CNN parameteres here
    x = ndtensor(len(tr.in_shape))(name = 'x') # video input
    x_ = _shared(empty(tr.in_shape))

    conv_shapes = []
    for i in xrange(net.n_stages):
        k,p,v = array(net.kernels[i]), array(net.pools[i]), array(tr.video_shapes[i])
        conv_s = tuple(v-k+1)
        conv_shapes.append(conv_s)
        tr.video_shapes.append(tuple((v-k+1)/p))
        print "stage", i
        print "  conv",tr.video_shapes[i],"->",conv_s
        print "  pool",conv_s,"->",tr.video_shapes[i+1],"x",net.maps[i+1]

    # number of inputs for MLP = (# maps last stage)*(# convnets)*(resulting video shape) + trajectory size
    n_in_MLP = net.maps[-1]*net.n_convnets*prod(tr.video_shapes[-1]) 
    print 'MLP:', n_in_MLP, "->", net.hidden, "->", net.n_class, ""

    if use.depth:
        if net.n_convnets==2: 
            out = [x[:,:,0,:,:,:], x[:,:,1,:,:,:]] # 2 nets: body and hand

    # build 3D ConvNet
    layers = [] # all architecture layers
    insp = []
    for stage in xrange(net.n_stages):
        for i in xrange(len(out)): # for body and hand
            # normalization
            if use.norm and stage==0: 
                gray_norm = NormLayer(out[i][:,0:1], method="lcn",
                    use_divisor=use.norm_div).output
                gray_norm = std_norm(gray_norm,axis=[-3,-2,-1])
                depth_norm = var_norm(out[i][:,1:])
                out[i]  = T.concatenate([gray_norm,depth_norm],axis=1)
            elif use.norm:
                out[i] = NormLayer(out[i], method="lcn",use_divisor=use.norm_div).output
                out[i] = std_norm(out[i],axis=[-3,-2,-1])
            # convolutions  
            out[i] *= net.scaler[stage][i]
            layers.append(ConvLayer(out[i], **conv_args(stage, i, batch, net, use, tr.rng, tr.video_shapes)))
            out[i] = layers[-1].output
            out[i] = PoolLayer(out[i], net.pools[stage], method=net.pool_method).output
            if tr.inspect: insp.append(T.mean(out[i]))

    # flatten all convnets outputs
    for i in xrange(len(out)): out[i] = std_norm(out[i],axis=[-3,-2,-1])
    out = [out[i].flatten(2) for i in range(len(out))]
    vid_ = T.concatenate(out, axis=1)

    # dropout
    if use.drop: 
        drop.p_vid = shared(float32(drop.p_vid_val) )
        drop.p_hidden = shared(float32(drop.p_hidden_val))
        drop.p_vid.set_value(float32(0.))  # dont use dropout when testing
        drop.p_hidden.set_value(float32(0.))  # dont use dropout when testing
        vid_ = DropoutLayer(vid_, rng=tr.rng, p=drop.p_vid).output

    # MLP
    # ------------------------------------------------------------------------------
    # fusion
    if net.fusion == "early":
        out = vid_
        # hidden layer
        Wh, bh = load_params(use)  # This is test, wudi added this!
        layers.append(HiddenLayer(out, W = Wh, b =bh, n_in=n_in_MLP, n_out=net.hidden, rng=tr.rng, 
            W_scale=net.W_scale[-2], b_scale=net.b_scale[-2], activation=relu))
        out = layers[-1].output

    if tr.inspect: insp = T.stack(insp[0],insp[1],insp[2],insp[3],insp[4],insp[5], T.mean(out))
    else: insp =  T.stack(0,0)

    if use.drop: out = DropoutLayer(out, rng=tr.rng, p=drop.p_hidden).output
    #maxout
    # softmax layer
    Ws, bs = load_params(use) # This is test, wudi added this!
    layers.append(LogRegr(out, W = Ws, b = bs, rng=tr.rng, activation=lin, n_in=net.hidden, 
        W_scale=net.W_scale[-1], b_scale=net.b_scale[-1], n_out=net.n_class))
    """
    layers[-1] : softmax layer
    layers[-2] : hidden layer (video if late fusion)
    layers[-3] : hidden layer (trajectory, only if late fusion)
    """
    # prediction
    y_pred = layers[-1].y_pred
    p_y_given_x = layers[-1].p_y_given_x
    ####################################################################
    ####################################################################
    print "\n%s\n\tcompiling\n%s"%(('-'*30,)*2)
    ####################################################################
    #################################################################### 
    # compile functions
    # ------------------------------------------------------------------------------
    print 'compiling test_model'

    eval_model = function([], [y_pred, p_y_given_x], 
        givens={x:x_},
        on_unused_input='ignore')

    return eval_model, x_
    def __init__(self, res_dir, load_path):
        
        self.layers = [] # only contain the layers from fusion
        self.insp_mean = [] # inspection for each layer mean activation
        self.insp_std = []  # inspection for each layer std activation
        self.params = [] # parameter list
        self.idx_mini = T.lscalar(name="idx_mini") # minibatch index
        self.idx_micro = T.lscalar(name="idx_micro") # microbatch index

        # symbolic variables
        self.x = ndtensor(len(tr.in_shape))(name = 'x') # video input
        self.y = T.ivector(name = 'y') # labels
        # symbolic variables
        self.x_skeleton = ndtensor(len(tr._skeleon_in_shape))(name = 'x_skeleton') # video input

        if use.drop: 
            drop.p_vid = shared(float32(drop.p_vid_val) )
            drop.p_hidden = shared(float32(drop.p_hidden_val))
        video_cnn = conv3d_chalearn(self.x, use, lr, batch, net, reg, drop, mom, \
                                             tr, res_dir, load_path)

        dbn = GRBM_DBN(numpy_rng=random.RandomState(123), n_ins=891, \
                hidden_layers_sizes=[2000, 2000, 1000], n_outs=101, input_x=self.x_skeleton, label=self.y ) 
        # we load the pretrained DBN skeleton parameteres here
        if use.load == True: dbn.load(os.path.join(load_path,'dbn_2015-06-19-11-34-24.npy'))


        #####################################################################
        # fuse the ConvNet output with skeleton output  -- need to change here
        ######################################################################  
        out = T.concatenate([video_cnn.out, dbn.sigmoid_layers[-1].output], axis=1)

        #####################################################################
        # wudi add the mean and standard deviation of the activation values to exam the neural net
        # Reference: Understanding the difficulty of training deep feedforward neural networks, Xavier Glorot, Yoshua Bengio
        #####################################################################
        insp_mean_list = []
        insp_std_list = []
        insp_mean_list.extend(dbn.out_mean)
        insp_mean_list.extend(video_cnn.insp_mean)
        insp_std_list.extend(dbn.out_std)
        insp_std_list.extend(video_cnn.insp_std)

        ######################################################################
        #MLP layer                
        self.layers.append(HiddenLayer(out, n_in=net.hidden, n_out=net.hidden, rng=tr.rng, 
            W_scale=net.W_scale[-1], b_scale=net.b_scale[-1], activation=net.activation))
        out = self.layers[-1].output

        if tr.inspect: 
            insp_mean_list.extend([T.mean(out)])
            insp_std_list.extend([T.std(out)])
        self.insp_mean = T.stacklists(insp_mean_list)
        self.insp_std = T.stacklists(insp_std_list)


        if use.drop: out = DropoutLayer(out, rng=tr.rng, p=drop.p_hidden).output

        ######################################################################
        # softmax layer
        self.layers.append(LogRegr(out, rng=tr.rng, n_in=net.hidden, 
            W_scale=net.W_scale[-1], b_scale=net.b_scale[-1], n_out=net.n_class))

        self.p_y_given_x = self.layers[-1].p_y_given_x
        ######################################################################
        # cost function
        self.cost = self.layers[-1].negative_log_likelihood(self.y)

        # function computing the number of errors
        self.errors = self.layers[-1].errors(self.y)

        # parameter list
        for layer in video_cnn.layers: 
            self.params.extend(layer.params)

        # pre-trained dbn parameter last layer  (W, b) doesn't need to incorporate into the params
        # for calculating the gradient
        self.params.extend(dbn.params[:-2])

        # MLP hidden layer params
        self.params.extend(self.layers[-2].params)
        # softmax layer params
        self.params.extend(self.layers[-1].params)
        # number of inputs for MLP = (# maps last stage)*(# convnets)*(resulting video shape) + trajectory size
        print 'MLP:', video_cnn.n_in_MLP, "->", net.hidden_penultimate, "+", net.hidden_traj, '->', \
           net.hidden, '->', net.hidden, '->', net.n_class, ""

        return 
#parser.add_argument('path')# the path to load best parameters
#args = parser.parse_args()
#load_path = args.path

load_path='/remote/idiap.svm/user.active/dwu/chalearn/result/try/CNN_normalisation_53.0% 2015.06.23.12.17.31/'
######################################################################
import cPickle
f = open('CNN_normalization.pkl','rb')
CNN_normalization = cPickle.load(f)
Mean_CNN = CNN_normalization ['Mean_CNN']
Std_CNN = CNN_normalization['Std_CNN']

# customized data loader for both video module and skeleton module
#loader = DataLoader_with_skeleton_normalisation(src, tr.batch_size, Mean_CNN, Std_CNN) # Lio changed it to read from HDF5 files
# we load the CNN parameteres here
x = ndtensor(len(tr.in_shape))(name = 'x') # video input
x_ = _shared(empty(tr.in_shape))


use.load=True
use.fast_conv=True
video_cnn = conv3d_chalearn(x, use, lr, batch, net, reg, drop, mom, tr, res_dir, load_path)

out = video_cnn.out
layers = [] # all architecture layers
# softmax layer
if use.load:
    W, b = load_params(use, load_path)
    print W.shape, b.shape
    layers.append(LogRegr(out, rng=tr.rng, n_in=net.hidden_vid, W=W, b=b,
        W_scale=net.W_scale[-1], b_scale=net.b_scale[-1], n_out=net.n_class))