label='$N=%i, \mu=%.2f$, $\sigma=%.2f$' % (len(outside_dist_dH), NLSSmu, NLSSsigma), color='white') plt.xlabel('% Deviation from expected distance') plt.ylabel('Frequency') plt.title( 'Histogram of luminosity distance diviation for supernovae of \ncluster origin and not of cluster origin' ) plt.legend() plt.show() within_dist_dH.sort() outside_dist_dH.sort() plt.plot(within_dist_dH, fun.cumfreq(within_dist_dH), label="Cluster Origin, (N=%i)" % len(within_dist_dH), color='blue') plt.plot(outside_dist_dH, fun.cumfreq(outside_dist_dH), label="Not cluster origin (N=%i)" % len(outside_dist_dH), color='green') emptyNLSS = plt.hist([], range=[-1, 1], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(within_dist_dH, outside_dist_dH)[0], ks_2samp(within_dist_dH, outside_dist_dH)[1]), color='white') plt.legend() #plt.axis([-0.5, 0.5, 0, 1])
Hinmean = sum(Hin) / len(Hin) Hinerror = fun.stdev(Hin, Hinmean) / np.sqrt(len(Hin)) print('Hubble Constant within distance to cluster: ', Hinmean, ' pm ', Hinerror) Hout = [fun.HubbleLCDM(x[2], fun.D(x[0])) for x in SNeout] Houtmean = sum(Hout) / len(Hout) Houterror = fun.stdev(Hout, Houtmean) / np.sqrt(len(Hout)) print('Hubble Constant within distance to cluster: ', Houtmean, ' pm ', Houterror) ####CUMFREQ cin.sort() cout.sort() plt.plot(cin, fun.cumfreq(cin), label="Cluster Origin, (N=%i)" % len(cin), color='blue') plt.plot(cout, fun.cumfreq(cout), label="Not cluster origin (N=%i)" % len(cout), color='green') emptyNLSS = plt.hist([], range=[-1, 1], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(cin, cout)[0], ks_2samp(cin, cout)[1]), color='white') plt.legend() #plt.axis([-0.5, 0.5, 0, 1]) plt.xlabel('$\delta d_L$')
print(ks_2samp(dHin, dHout)) ''' ####H values Hin = [fun.HubbleLCDM(x[2], fun.D(x[0])) for x in SNein] Hinmean = sum(Hin)/len(Hin) Hinerror = fun.stdev(Hin, Hinmean)/np.sqrt(len(Hin)) print('Hubble Constant within distance to cluster: ', Hinmean, ' pm ', Hinerror) Hout = [fun.HubbleLCDM(x[2], fun.D(x[0])) for x in SNeout] Houtmean = sum(Hout)/len(Hout) Houterror = fun.stdev(Hout, Houtmean)/np.sqrt(len(Hout)) print('Hubble Constant within distance to cluster: ', Houtmean, ' pm ', Houterror) ''' ####CUMFREQ dHin.sort() dHout.sort() plt.plot(dHin, fun.cumfreq(dHin), label="Cluster Origin, (N=%i)"%len(dHin), color='blue') plt.plot(dHout, fun.cumfreq(dHout), label="Not cluster origin (N=%i)"%len(dHout), color='green') emptyNLSS = plt.hist([], range=[-1,1], alpha=0.5, label='Stat=%.3f \np-val=%.4f'%(ks_2samp(dHin, dHout)[0], ks_2samp(dHin, dHout)[1]), color='white') plt.legend() #plt.axis([-0.5, 0.5, 0, 1]) plt.xlabel('% Deviation from expected distance') plt.ylabel('Cumulative frequency') plt.title('Cumulative frequency graph for SN of cluster and non-cluster origin') plt.show()
Hin = [fun.HubbleLCDM(x[2], fun.D(x[0])) for x in SNein] Hinmean = sum(Hin)/len(Hin) Hinerror = fun.stdev(Hin, Hinmean)/np.sqrt(len(Hin)) print('Hubble Constant within distance to cluster: ', Hinmean, ' pm ', Hinerror) Hout = [fun.HubbleLCDM(x[2], fun.D(x[0])) for x in SNeout] Houtmean = sum(Hout)/len(Hout) Houterror = fun.stdev(Hout, Houtmean)/np.sqrt(len(Hout)) print('Hubble Constant within distance to cluster: ', Houtmean, ' pm ', Houterror) ''' ####CUMFREQ dHin.sort() dHout.sort() plt.plot(dHin, fun.cumfreq(dHin), label="Cluster Origin, (N=%i)" % len(dHin), color='blue') plt.plot(dHout, fun.cumfreq(dHout), label="Not cluster origin (N=%i)" % len(dHout), color='green') emptyNLSS = plt.hist([], range=[-1, 1], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(dHin, dHout)[0], ks_2samp(dHin, dHout)[1]), color='white') plt.legend() #plt.axis([-0.5, 0.5, 0, 1]) plt.xlabel('% Deviation from expected distance')
alpha=0.5, label='$N=%i, \mu=%.2f$, $\sigma=%.2f$' % (len(small_dH), smallmu, smallsigma), color='white') plt.xlabel('% Deviation from expected distance') plt.ylabel('Frequency') plt.title( 'Histogram of deviation from expected distance for small and its corresponding dipole supernovae' ) plt.legend() plt.show() large_dH.sort() small_dH.sort() plt.plot(large_dH, fun.cumfreq(large_dH), label="Maximal H0", color='blue') plt.plot(small_dH, fun.cumfreq(small_dH), label="Minimal H0", color='red') emptyNLSS = plt.hist( [], range=[-0.3, 0.3], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(large_dH, small_dH)[0], ks_2samp(large_dH, small_dH)[1]), color='white') plt.xlabel('$\delta d_L$') plt.ylabel('Frequency') plt.title( 'Cumulative frequency for the deviations \nof SNe found in the area of maximal and minimal expansion.' ) plt.legend() plt.show()
alpha=0.5, label='$N=%i, \mu=%.2f$, $\sigma=%.2f$' % (len(SGC_dH), SGCmu, SGCsigma), color='white') plt.xlabel('% Deviation from expected distance') plt.ylabel('Frequency') plt.title( 'Histogram of deviation from expected distance for SGC and its corresponding dipole supernovae' ) plt.legend() plt.show() NGC_dH.sort() SGC_dH.sort() plt.plot(NGC_dH, fun.cumfreq(NGC_dH), label="NGC", color='blue') plt.plot(SGC_dH, fun.cumfreq(SGC_dH), label="SGC", color='red') emptyNLSS = plt.hist( [], range=[-0.3, 0.3], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(NGC_dH, SGC_dH)[0], ks_2samp(NGC_dH, SGC_dH)[1]), color='white') plt.xlabel('% Deviation from expected distance') plt.ylabel('Frequency') plt.title( 'Cumulative frequency for the deviations in the SGC and its corresponding dipole.' ) plt.legend() plt.show()
sys.path.insert(0, 'C:\Python34\masters\graphs') import functions as fun ##Create two Gaussian distributions of random numbers, differing ##only in a standard deviation of 0.2. dist1 = np.random.normal(0, 1, 500) dist2 = np.random.normal(0, 0.8, 2000) print(ks_2samp(dist1, dist2)) ##Perform a KS test dist1.sort() ##Sort the two distributions from low to high to create dist2.sort() ##a cumulative frequency plot ##Plotting plt.plot(dist1, fun.cumfreq(dist1), label="Distribution 1", color='blue') plt.plot(dist2, fun.cumfreq(dist2), label="Distribution 2", color='red') emptyNLSS = plt.hist([], range=[-0.3, 0.3], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(dist1, dist2)[0], ks_2samp(dist1, dist2)[1]), color='white') plt.xlabel('Value') plt.ylabel('Cumulative Frequency') plt.legend() plt.show() ##Empirical p-value determination bothdist = np.append(dist1, dist2) ##Parent distribution trials = 10000
label='$N=%i, \mu=%.2f$, $\sigma=%.2f$' % (len(SGC_dH), SGCmu, SGCsigma), color='white') plt.xlabel('% Deviation from expected distance') plt.ylabel('Frequency') plt.title( 'Histogram of deviation from expected distance for supernovae\n from maximal and minimal accelerating regions' ) plt.legend() plt.show() NGC_dH.sort() SGC_dH.sort() plt.plot(NGC_dH, fun.cumfreq(NGC_dH), label="Maximal acceleration", color='blue') plt.plot(SGC_dH, fun.cumfreq(SGC_dH), label="Minimal acceleration", color='red') plt.xlabel('% Deviation from expected distance') plt.ylabel('Frequency') plt.title( 'Cumulative frequency for the for supernovae\n from maximal and minimal accelerating regions' ) plt.legend() plt.show() #########EQUITORIAL COORDINATE
while i < len(NGCred): NGC_dH.append((fun.D(fun.HubbleIntegrate(NGCred[i])) - NGCdist[i]) / fun.D(fun.HubbleIntegrate(NGCred[i]))) i += 1 i = 0 while i < len(SGCred): SGC_dH.append((fun.D(fun.HubbleIntegrate(SGCred[i])) - SGCdist[i]) / fun.D(fun.HubbleIntegrate(SGCred[i]))) i += 1 print(ks_2samp(NGC_dH, SGC_dH)) NGC_dH.sort() SGC_dH.sort() plt.plot(NGC_dH, fun.cumfreq(NGC_dH), label="Maximal expansion", color='blue') plt.plot(SGC_dH, fun.cumfreq(SGC_dH), label="Minimal expansion", color='red') emptyNLSS = plt.hist( [], range=[-0.3, 0.3], alpha=0.5, label='Stat=%.3f \np-val=%.4f' % (ks_2samp(NGC_dH, SGC_dH)[0], ks_2samp(NGC_dH, SGC_dH)[1]), color='white') plt.xlabel('$\delta d_L$') plt.ylabel('Cumulative Frequency') plt.title( 'Cumulative frequency for the deviations in the\n maximal and minimal rate of expansion' ) plt.legend() plt.show()