Пример #1
0
            # Assign the monthly gridded DOT anomaly to the array
            dot_anom_ts[:, :, t] = nc.variables[
                'dynamic_ocean_topography_anomaly'][:]
            nc.close()
            # Move the month index along by 1
            t += 1

## Cycle through each grid cell and calculate the trend of the data
dot_anom_regress = np.full((59, 361), fill_value=np.NaN)

for ilat in range(len(lat)):
    for ilon in range(len(lon)):
        # If there are nans in the data
        if np.any(np.isfinite(dot_anom_ts[ilat, ilon, :])):
            regress = stats.linregress(
                time, funct.inpaint_nans(dot_anom_ts[ilat, ilon, :]))
            dot_anom_regress[ilat, ilon] = (regress[0] * 1000)

## Calculate the mean circumpolar trend

# Calculate the grid size for each cell
grid_lon, grid_lat = np.meshgrid(lon, lat)
# Calculate the surface area of each cell
S = funct.surface_area(grid_lat, grid_lon, 0.5, 1.0)

total_area = np.nansum(np.nansum(~np.isnan(dot_anom_regress) * S))

total_trend = np.nansum(dot_anom_regress * S) / total_area

print('The total trend is:', total_trend, 'mm / year')
Пример #2
0
        nc = Dataset(altimetry_file, 'r')
        lat = nc.variables['latitude'][:]
        lon = nc.variables['longitude'][:]
        dot_anom_ts[:, :, t] = nc.variables['dynamic_ocean_topography_anomaly'][:]
        nc.close()

    # Calculate the correlation between the time series and the altimetry data
    dot_anom_xcorr = np.full((59, 361), fill_value=np.NaN)
    dot_anom_xcorr_pvalues = np.full((59, 361), fill_value=np.NaN)

    for ilat in range(len(lat)):
        for ilon in range(len(lon)):
            # If there are nans in the altimetry data
            if np.any(np.isfinite(dot_anom_ts[ilat, ilon, :])):
                xcorr = stats.spearmanr(funct.inpaint_nans(dot_anom_ts[ilat, ilon, :]), bpr)
                dot_anom_xcorr[ilat, ilon] = xcorr[0]
                dot_anom_xcorr_pvalues[ilat, ilon] = xcorr[1]

    pl.figure()
    pl.clf()
    m = Basemap(projection='spstere', boundinglat=-50, lon_0=180, resolution='l')
    m.drawmapboundary()
    m.drawcoastlines(zorder=10)
    m.fillcontinents(zorder=10)
    m.drawparallels(np.arange(-80., 81., 20.), labels=[1, 0, 0, 0])
    m.drawmeridians(np.arange(-180., 181., 20.), labels=[0, 0, 0, 1])
        
    grid_lats, grid_lons = np.meshgrid(lat, lon)
    stereo_x, stereo_y = m(grid_lons, grid_lats)
        
Пример #3
0
            lat = nc.variables['latitude'][:]
            lon = nc.variables['longitude'][:]
            # Assign the monthly gridded DOT anomaly to the array
            ssh_anom_ts[:, :, t]  = nc.variables['sea_surface_height_anomaly'][:]
            nc.close()
            # Move the month index along by 1
            t += 1

## Cycle through each grid cell and calculate the trend of the data
ssh_anom_regress = np.full((59, 361), fill_value=np.NaN)

for ilat in range(len(lat)):
    for ilon in range(len(lon)):
        # If there are nans in the data
        if np.any(np.isfinite(ssh_anom_ts[ilat, ilon, :])):
            regress = stats.linregress(time, funct.inpaint_nans(ssh_anom_ts[ilat, ilon, :]))
            ssh_anom_regress[ilat, ilon] = (regress[0] * 1000)

## Calculate the mean circumpolar trend

# Calculate the grid size for each cell
grid_lon, grid_lat = np.meshgrid(lon, lat)
# Calculate the surface area of each cell
S = funct.surface_area(grid_lat, grid_lon, 0.5, 1.0)

total_area = np.nansum(np.nansum(~np.isnan(ssh_anom_regress) * S))

total_trend = np.nansum(ssh_anom_regress * S) / total_area

print('The total trend is:', total_trend, 'mm / year')