length = length, base_folder = base_folder, training_file = os.path.join(model, data['ric_template']), output = "test_rric_results_" + args.output, folder = "") if algorithm == "REC": crossed_output = functions.run_crossed( filename = crossed_test, model = os.path.join(model, data['rec_crossed_model']), output = "test_crossed_results_" + args.output, base_folder = base_folder, folder="") #Read scores if algorithm == "CROSSED" or algorithm == "REC": crossed_scores = functions.read_crossed( filename = crossed_output, original = args.test, length = length) ric_scores = None rric_scores = None else: crossed_scores = None if algorithm != "CROSSED": if algorithm != "rRIC": ric_scores = functions.read_ric(ric_output) else: ric_scores = None if algorithm != "RIC": rric_scores = functions.read_ric(rric_output) else: rric_scores = None
#Train CRoSSeD model model = functions.train_crossed(positive=crossed_positives, negative=crossed_negatives, model="CRoSSeD_model", unique=unique, base_folder=base_folder) #Aply CRoSSeD to input data crossed_positives_output = functions.run_crossed( filename=crossed_positives, model=model, output="test_crossed_positives", base_folder=base_folder, folder=unique) crossed_negatives_output = functions.run_crossed( filename=crossed_negatives, model=model, output="test_crossed_negatives", base_folder=base_folder, folder=unique) #Read scores crossed_positive_scores = functions.read_crossed( filename=crossed_positives_output, original=args.positive, length=length) crossed_negative_scores = functions.read_crossed( filename=crossed_negatives_output, original=args.negative, length=length) crossed_value_fdr = functions.get_threshold_unique( positive = crossed_positive_scores, negative = crossed_negative_scores, optim = "FDR") crossed_value_sen = functions.get_threshold_unique( positive = crossed_positive_scores, negative = crossed_negative_scores, optim = "SEN") """ #Do REC CRoSSeD