def table_of_contents(self, node): functions.remove_tag(node, 'div', id='footer') functions.remove_tag(node, 'div', 'pageSection', 'main-content') functions.remove_tag(node, 'div', 'pageSectionHeader') functions.remove_tag(node, 'div', id='main-header') functions.remove_tag(node, 'img') return node.find('div', 'pageSection').ul
def load(string) -> Generation: generation_count, string = remove_tag("generation_count", string) population_str, string = remove_tag("population", string) gene_pool_str, string = remove_tag("gene_pool", string) population = Population.load(population_str) gene_pool = GenePool.load(gene_pool_str) return Generation(int(generation_count), population, gene_pool)
def table_of_contents(self, node): functions.remove_tag(node,'div',id='footer') functions.remove_tag(node,'div','pageSection','main-content') functions.remove_tag(node,'div','pageSectionHeader') functions.remove_tag(node,'div',id='main-header') functions.remove_tag(node,'img') return node.find('div','pageSection').ul
def load(self, file_path): load_file = open(file_path, 'r') load_string = "\n".join(load_file.readlines()) load_file.close() current_gen, load_string = remove_tag('current', load_string) self.current_generation = Generation.load(current_gen) past, load_string = remove_tag('past', load_string) past_gen, load_string = remove_tag('generation', load_string) self.past = [] while past_gen is not None: self.past.append(Generation.load(past_gen)) past_gen, load_string = remove_tag('generation', load_string)
def load(string) -> Gene: weight_str, string = remove_tag("weight", string) in_node_str, string = remove_tag("in_node", string) out_node_str, string = remove_tag("out_node", string) innovation_number_str, string = remove_tag("innovation_number", string) enabled_str, string = remove_tag("enabled", string) weight = float(weight_str) in_node = int(in_node_str) out_node = int(out_node_str) innovation_number = int(innovation_number_str) enabled = bool(enabled_str) return Gene(weight, in_node, out_node, innovation_number, enabled)
def load(string) -> Genome: input_size_str, string = remove_tag("input_size", string) output_size_str, string = remove_tag("output_size", string) raw_fitness_str, string = remove_tag("raw_fitness", string) genes_str, string = remove_tag("genes", string) input_size = int(input_size_str) output_size = int(output_size_str) raw_fitness = float(raw_fitness_str) genes = [] while genes_str: gene_str, genes_str = remove_tag("gene", genes_str) gene = Gene.load(gene_str) genes.append(gene) genome = Genome(genes, input_size, output_size) genome.raw_fitness = raw_fitness return genome
def load(string) -> GenePool: innovation_number_str, string = remove_tag("innovation_number", string) node_number_str, string = remove_tag("node_number", string) connection_innovations_str, string = remove_tag("connection_innovations", string) node_innovations_str, string = remove_tag("node_innovations", string) node_depths_str, string = remove_tag("node_depths", string) innovation_number = int(innovation_number_str) node_number = int(node_number_str) connection_innovations = load_dict(connection_innovations_str, StructureGene.StructureGene, int) node_innovations = load_dict(node_innovations_str, Gene.Gene, int) node_depths = load_dict(node_depths_str, int, int) gene_pool = GenePool(innovation_number, node_number, node_depths) gene_pool.connection_innovations = connection_innovations gene_pool.node_innovations = node_innovations return gene_pool
def page(node, depth=0, mindepth=0, singlepage=False): functions.remove_tag(node, 'div', id='footer') functions.remove_tag(node, 'head') node = node.find('div', 'wiki-content group', id='main-content') [ x.unwrap() for x in node.find_all('span', 'confluence-embedded-file-wrapper') ] [image(x) for x in node.find_all('img')] [ header(x, depth, mindepth) for x in node.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6']) ] if singlepage: fix_anchors(node) else: fix_links(node) return node
def load(string) -> Specie: representative_str, string = remove_tag("representative", string) age_str, string = remove_tag("age", string) niche_fitness_str, string = remove_tag("niche_fitness", string) max_fitness_str, string = remove_tag("max_fitness", string) genomes_str, string = remove_tag("genomes", string) representative = Genome.load(representative_str) age = int(age_str) niche_fitness = float(niche_fitness_str) max_fitness = float(max_fitness_str) genomes = [] while genomes_str: genome_str, genomes_str = remove_tag("genome", genomes_str) genome = Genome.load(genome_str) genomes.append(genome) specie = Specie(representative, genomes, age, max_fitness) specie.niche_fitness = niche_fitness return specie