def zeta(s): """ zeta(s) -- calculate the Riemann zeta function of a real or complex argument s. """ Float.store() Float._prec += 8 si = s s = ComplexFloat(s) if s.real < 0: # Reflection formula (XXX: gets bad around the zeros) pi = pi_float() y = power(2, s) * power(pi, s-1) * sin(pi*s/2) * gamma(1-s) * zeta(1-s) else: p = Float._prec n = int((p + 2.28*abs(float(s.imag)))/2.54) + 3 d = _zeta_coefs(n) if isinstance(si, (int, long)): t = 0 for k in range(n): t += (((-1)**k * (d[k] - d[n])) << p) // (k+1)**si y = (Float((t, -p)) / -d[n]) / (Float(1) - Float(2)**(1-si)) else: t = Float(0) for k in range(n): t += (-1)**k * Float(d[k]-d[n]) * exp(-_logk(k+1)*s) y = (t / -d[n]) / (Float(1) - exp(log(2)*(1-s))) Float.revert() if isinstance(y, ComplexFloat) and s.imag == 0: return +y.real else: return +y
def jsn(u, m): """ Computes of the Jacobi elliptic sn function in terms of Jacobi theta functions. `u` is any complex number, `m` must be in the unit disk The sn-function is doubly periodic in the complex plane with periods `4 K(m)` and `2 i K(1-m)` (see :func:`ellipk`):: >>> from mpmath import * >>> mp.dps = 25 >>> print jsn(2, 0.25) 0.9628981775982774425751399 >>> print jsn(2+4*ellipk(0.25), 0.25) 0.9628981775982774425751399 >>> print chop(jsn(2+2*j*ellipk(1-0.25), 0.25)) 0.9628981775982774425751399 """ if abs(m) < eps: return sin(u) elif m == one: return tanh(u) else: extra = 10 try: mp.prec += extra q = calculate_nome(sqrt(m)) v3 = jtheta(3, zero, q) v2 = jtheta(2, zero, q) # mathworld says v4 arg1 = u / (v3*v3) v1 = jtheta(1, arg1, q) v4 = jtheta(4, arg1, q) sn = (v3/v2)*(v1/v4) finally: mp.prec -= extra return sn
def gamma(x): """ gamma(x) -- calculate the gamma function of a real or complex number x. x must not be a negative integer or 0 """ Float.store() Float._prec += 2 if isinstance(x, complex): x = ComplexFloat(x) elif not isinstance(x, (Float, ComplexFloat, Rational, int, long)): x = Float(x) if isinstance(x, (ComplexFloat, complex)): re, im = x.real, x.imag else: re, im = x, 0 # For negative x (or positive x close to the pole at x = 0), # we use the reflection formula if re < 0.25: if re == int(re) and im == 0: raise ZeroDivisionError, "gamma function pole" Float._prec += 3 p = pi_float() g = p / (sin(p*x) * gamma(1-x)) else: x -= 1 prec, a, c = _get_spouge_coefficients(Float.getprec()+7) s = _spouge_sum(x, prec, a, c) if not isinstance(x, (Float, ComplexFloat)): x = Float(x) # TODO: higher precision may be needed here when the precision # and/or size of x are extremely large Float._prec += 10 g = exp(log(x+a)*(x+Float(0.5))) * exp(-x-a) * s Float.revert() return +g
def _jacobi_theta2(z, q): extra1 = 10 extra2 = 20 # the loops below break when the fixed precision quantities # a and b go to zero; # right shifting small negative numbers by wp one obtains -1, not zero, # so the condition a**2 + b**2 > MIN is used to break the loops. MIN = 2 if z == zero: if isinstance(q, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 s = x2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << (wp+1)) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) else: wp = mp.prec + extra1 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im sre = (1<<wp) + are sim = aim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) else: if isinstance(q, mpf) and isinstance(z, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s = c1 + ((a * cn) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s += (a * cn) >> wp s = (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) s *= nthroot(q, 4) return s # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre = c1 + ((are * cn) >> wp) sim = ((aim * cn) >> wp) while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre += ((are * cn) >> wp) sim += ((aim * cn) >> wp) sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 prec0 = mp.prec mp.prec = wp c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre = c1re + ((a * cnre) >> wp) sim = c1im + ((a * cnim) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += ((a * cnre) >> wp) sim += ((a * cnim) >> wp) sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = mp.prec mp.prec = wp # cos(z), siz(z) with z complex c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 n = 1 termre = c1re termim = c1im sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 3 termre = ((are * cnre - aim * cnim) >> wp) termim = ((are * cnim + aim * cnre) >> wp) sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 termre = ((are * cnre - aim * cnim) >> wp) termim = ((aim * cnre + are * cnim) >> wp) sre += ((are * cnre - aim * cnim) >> wp) sim += ((aim * cnre + are * cnim) >> wp) n += 2 sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) s *= nthroot(q, 4) return s
def _djacobi_theta3(z, q, nd): """nd=1,2,3 order of the derivative with respect to z""" MIN = 2 extra1 = 10 extra2 = 20 if isinstance(q, mpf) and isinstance(z, mpf): s = MP_ZERO wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): s += (a * sn) >> wp else: s += (a * cn) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: s += (a * sn * n**nd) >> wp else: s += (a * cn * n**nd) >> wp n += 1 s = -(s << (nd+1)) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): sre = (are * sn) >> wp sim = (aim * sn) >> wp else: sre = (are * cn) >> wp sim = (aim * cn) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: sre += (are * sn * n**nd) >> wp sim += (aim * sn * n**nd) >> wp else: sre += (are * cn * n**nd) >> wp sim += (aim * cn * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp prec0 = mp.prec mp.prec = wp c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) if (nd&1): sre = (a * snre) >> wp sim = (a * snim) >> wp else: sre = (a * cnre) >> wp sim = (a * cnim) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (a * snre * n**nd) >> wp sim += (a * snim * n**nd) >> wp else: sre += (a * cnre * n**nd) >> wp sim += (a * cnim * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = mp.prec mp.prec = wp # cos(2*z), sin(2*z) with z complex c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) if (nd&1): sre = (are * snre - aim * snim) >> wp sim = (aim * snre + are * snim) >> wp else: sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if(nd&1): sre += ((are * snre - aim * snim) * n**nd) >> wp sim += ((aim * snre + are * snim) * n**nd) >> wp else: sre += ((are * cnre - aim * cnim) * n**nd) >> wp sim += ((aim * cnre + are * cnim) * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s
def _jacobi_theta3(z, q): extra1 = 10 extra2 = 20 MIN = 2 if z == zero: if isinstance(q, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) s = x a = b = x x2 = (x*x) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << wp) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) return s else: wp = mp.prec + extra1 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) sre = are = bre = xre sim = aim = bim = xim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s else: if isinstance(q, mpf) and isinstance(z, mpf): s = MP_ZERO wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 s += (a * cn) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp s += (a * cn) >> wp s = (1 << wp) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) return s # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 sre = (are * cn) >> wp sim = (aim * cn) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp sre += (are * cn) >> wp sim += (aim * cn) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp prec0 = mp.prec mp.prec = wp c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) sre = (a * cnre) >> wp sim = (a * cnim) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (a * cnre) >> wp sim += (a * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = mp.prec mp.prec = wp # cos(2*z), sin(2*z) with z complex c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (are * cnre - aim * cnim) >> wp sim += (aim * cnre + are * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s
def _djacobi_theta2(z, q, nd): MIN = 2 extra1 = 10 extra2 = 20 if isinstance(q, mpf) and isinstance(z, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): s = s1 + ((a * sn * 3**nd) >> wp) else: s = c1 + ((a * cn * 3**nd) >> wp) n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if nd&1: s += (a * sn * (2*n+1)**nd) >> wp else: s += (a * cn * (2*n+1)**nd) >> wp n += 1 s = -(s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre = s1 + ((are * sn * 3**nd) >> wp) sim = ((aim * sn * 3**nd) >> wp) else: sre = c1 + ((are * cn * 3**nd) >> wp) sim = ((aim * cn * 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre += ((are * sn * n**nd) >> wp) sim += ((aim * sn * n**nd) >> wp) else: sre += ((are * cn * n**nd) >> wp) sim += ((aim * cn * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 prec0 = mp.prec mp.prec = wp c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + ((a * snre * 3**nd) >> wp) sim = s1im + ((a * snim * 3**nd) >> wp) else: sre = c1re + ((a * cnre * 3**nd) >> wp) sim = c1im + ((a * cnim * 3**nd) >> wp) n = 5 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += ((a * snre * n**nd) >> wp) sim += ((a * snim * n**nd) >> wp) else: sre += ((a * cnre * n**nd) >> wp) sim += ((a * cnim * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = mp.prec mp.prec = wp # cos(2*z), siz(2*z) with z complex c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp) else: sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (((are * snre - aim * snim) * n**nd) >> wp) sim += (((aim * snre + are * snim) * n**nd) >> wp) else: sre += (((are * cnre - aim * cnim) * n**nd) >> wp) sim += (((aim * cnre + are * cnim) * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) s *= nthroot(q, 4) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s
def jacobi_elliptic_sn(u, m, verbose=False): """ Implements the jacobi elliptic sn function, using the expansion in terms of q, from Abramowitz 16.23.1. u is any complex number, m is the parameter Alternative implementation: Expansion in terms of jacobi theta functions appears to fail with round off error, despite I also think that the expansion in terms of q is much faster than four expansions in terms of q. ********************************** Previous implementation kept here: if not isinstance(u, mpf): raise TypeError if not isinstance(m, mpf): raise TypeError zero = mpf('0') if u == zero and m == 0: return zero else: q = calculate_nome(sqrt(m)) v3 = jacobi_theta_3(zero, q) v2 = jacobi_theta_2(zero, q) # mathworld says v4 arg1 = u / (v3*v3) v1 = jacobi_theta_1(arg1, q) v4 = jacobi_theta_4(arg1, q) sn = (v3/v2)*(v1/v4) return sn ********************************** """ u = convert_lossless(u) m = convert_lossless(m) if verbose: print >> sys.stderr, '\nelliptic.jacobi_elliptic_sn' print >> sys.stderr, '\tu: %1.12f' % u print >> sys.stderr, '\tm: %1.12f' % m zero = mpf('0') onehalf = mpf('0.5') one = mpf('1') two = mpf('2') if m == zero: # sn collapes to sin(u) if verbose: print >> sys.stderr, '\nsn: special case, m == 0' return sin(u) elif m == one: # sn collapses to tanh(u) if verbose: print >> sys.stderr, '\nsn: special case, m == 1' return tanh(u) else: k = sqrt(m) # convert m to k q = calculate_nome(k) v = (pi * u) / (two*ellipk(k**2)) if v == pi or v == zero: # sin factor always zero return zero sum = zero term = zero # series starts at zero while True: if verbose: print >> sys.stderr, 'elliptic.jacobi_elliptic_sn: calculating' factor1 = (q**(term + onehalf)) / (one - q**(two*term + one)) factor2 = sin((two*term + one)*v) term_n = factor1*factor2 sum = sum + term_n if verbose: print >> sys.stderr, '\tTerm: %d' % term, print >> sys.stderr, '\tterm_n: %e' % term_n, print >> sys.stderr, '\tsum: %e' % sum if not factor2 == zero: #if log(term_n, '10') < -1*mpf.dps: if abs(term_n) < eps: break term = term + one answer = (two*pi) / (sqrt(m) * ellipk(k**2)) * sum return answer
def jacobi_theta_1(z, m, verbose=False): """ Implements the jacobi theta function 1, using the series expansion found in Abramowitz & Stegun [1]. z is any complex number, but only reals here? m is the parameter, which must be converted to the nome """ if verbose: print >> sys.stderr, 'elliptic.jacobi_theta_1' m = convert_lossless(m) z = convert_lossless(z) k = sqrt(m) q = calculate_nome(k) if verbose: print >> sys.stderr, '\tk: %f ' % k print >> sys.stderr, '\tq: %f ' % q if abs(q) >= mpf('1'): raise ValueError sum = 0 term = 0 # series starts at 0 minusone = mpf('-1') zero = mpf('0') one = mpf('1') if z == zero: if verbose: print >> sys.stderr, 'elliptic.jacobi_theta_1: z == 0, return 0' return zero elif q == zero: if verbose: print >> sys.stderr, 'elliptic.jacobi_theta_1: q == 0, return 0' return zero else: if verbose: print >> sys.stderr, 'ellipticl.jacobi_theta_1: calculating' while True: if (term % 2) == 0: factor0 = one else: factor0 = minusone factor1 = q**(term*(term +1)) factor2 = sin((2*term + 1)*z) term_n = factor0 * factor1 * factor2 sum = sum + term_n if verbose: print >> sys.stderr, '\tTerm: %d' % term, print >> sys.stderr, '\tterm_n: %e' % term_n, print >> sys.stderr, '\tsum: %e' % sum if factor1 == zero: # all further terms will be zero break if factor2 != zero: # check precision iff cos != 0 #if log(term_n, '10') < -1*mpf.dps: if abs(term_n) < eps: break term = term + 1 return (2*q**(0.25))*sum # can't get here print >> sys.stderr, 'elliptic.jacobi_theta_1 in impossible state' sys.exit(2)
def sine_dist(self, t): return self.v0 + self.k * functions.sin(self.phi + self.w * t)
def _jacobi_theta2(z, q): extra1 = 10 extra2 = 20 # the loops below break when the fixed precision quantities # a and b go to zero; # right shifting small negative numbers by wp one obtains -1, not zero, # so the condition a**2 + b**2 > MIN is used to break the loops. MIN = 2 if z == zero: if isinstance(q, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x * x) >> wp a = b = x2 s = x2 while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp s += a s = (1 << (wp + 1)) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) else: wp = mp.prec + extra1 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = x2re aim = bim = x2im sre = (1 << wp) + are sim = aim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) else: if isinstance(q, mpf) and isinstance(z, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x * x) >> wp a = b = x2 c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1 * c1 - s1 * s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp s = c1 + ((a * cn) >> wp) while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp s += (a * cn) >> wp s = (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) s *= nthroot(q, 4) return s # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1 * c1 - s1 * s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp sre = c1 + ((are * cn) >> wp) sim = ((aim * cn) >> wp) while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp sre += ((are * cn) >> wp) sim += ((aim * cn) >> wp) sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) x2 = (x * x) >> wp a = b = x2 prec0 = mp.prec mp.prec = wp c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re * c1re - c1im * c1im - s1re * s1re + s1im * s1im) >> wp c2im = (c1re * c1im - s1re * s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re * s1re - c1im * s1im) >> (wp - 1) s2im = (c1re * s1im + c1im * s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre = c1re + ((a * cnre) >> wp) sim = c1im + ((a * cnim) >> wp) while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += ((a * cnre) >> wp) sim += ((a * cnim) >> wp) sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = mp.prec mp.prec = wp # cos(z), siz(z) with z complex c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) c2re = (c1re * c1re - c1im * c1im - s1re * s1re + s1im * s1im) >> wp c2im = (c1re * c1im - s1re * s1im) >> (wp - 1) s2re = (c1re * s1re - c1im * s1im) >> (wp - 1) s2im = (c1re * s1im + c1im * s1re) >> (wp - 1) t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 n = 1 termre = c1re termim = c1im sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 3 termre = ((are * cnre - aim * cnim) >> wp) termim = ((are * cnim + aim * cnre) >> wp) sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 termre = ((are * cnre - aim * cnim) >> wp) termim = ((aim * cnre + are * cnim) >> wp) sre += ((are * cnre - aim * cnim) >> wp) sim += ((aim * cnre + are * cnim) >> wp) n += 2 sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) s *= nthroot(q, 4) return s
def _djacobi_theta3(z, q, nd): """nd=1,2,3 order of the derivative with respect to z""" MIN = 2 extra1 = 10 extra2 = 20 if isinstance(q, mpf) and isinstance(z, mpf): s = MP_ZERO wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x * x) >> wp c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 if (nd & 1): s += (a * sn) >> wp else: s += (a * cn) >> wp n = 2 while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp cn, sn = (cn * c1 - sn * s1) >> wp, (sn * c1 + cn * s1) >> wp if nd & 1: s += (a * sn * n**nd) >> wp else: s += (a * cn * n**nd) >> wp n += 1 s = -(s << (nd + 1)) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 if (nd & 1): sre = (are * sn) >> wp sim = (aim * sn) >> wp else: sre = (are * cn) >> wp sim = (aim * cn) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn * c1 - sn * s1) >> wp, (sn * c1 + cn * s1) >> wp if nd & 1: sre += (are * sn * n**nd) >> wp sim += (aim * sn * n**nd) >> wp else: sre += (are * cn * n**nd) >> wp sim += (aim * cn * n**nd) >> wp n += 1 sre = -(sre << (nd + 1)) sim = -(sim << (nd + 1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x * x) >> wp prec0 = mp.prec mp.prec = wp c1 = cos(2 * z) s1 = sin(2 * z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) if (nd & 1): sre = (a * snre) >> wp sim = (a * snim) >> wp else: sre = (a * cnre) >> wp sim = (a * cnim) >> wp n = 2 while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp t1 = (cnre * c1re - cnim * c1im - snre * s1re + snim * s1im) >> wp t2 = (cnre * c1im + cnim * c1re - snre * s1im - snim * s1re) >> wp t3 = (snre * c1re - snim * c1im + cnre * s1re - cnim * s1im) >> wp t4 = (snre * c1im + snim * c1re + cnre * s1im + cnim * s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd & 1): sre += (a * snre * n**nd) >> wp sim += (a * snim * n**nd) >> wp else: sre += (a * cnre * n**nd) >> wp sim += (a * cnim * n**nd) >> wp n += 1 sre = -(sre << (nd + 1)) sim = -(sim << (nd + 1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = mp.prec mp.prec = wp # cos(2*z), sin(2*z) with z complex c1 = cos(2 * z) s1 = sin(2 * z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) if (nd & 1): sre = (are * snre - aim * snim) >> wp sim = (aim * snre + are * snim) >> wp else: sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre * c1re - cnim * c1im - snre * s1re + snim * s1im) >> wp t2 = (cnre * c1im + cnim * c1re - snre * s1im - snim * s1re) >> wp t3 = (snre * c1re - snim * c1im + cnre * s1re - cnim * s1im) >> wp t4 = (snre * c1im + snim * c1re + cnre * s1im + cnim * s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd & 1): sre += ((are * snre - aim * snim) * n**nd) >> wp sim += ((aim * snre + are * snim) * n**nd) >> wp else: sre += ((are * cnre - aim * cnim) * n**nd) >> wp sim += ((aim * cnre + are * cnim) * n**nd) >> wp n += 1 sre = -(sre << (nd + 1)) sim = -(sim << (nd + 1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) if (nd & 1): return (-1)**(nd // 2) * s else: return (-1)**(1 + nd // 2) * s
def _jacobi_theta3(z, q): extra1 = 10 extra2 = 20 MIN = 2 if z == zero: if isinstance(q, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) s = x a = b = x x2 = (x * x) >> wp while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp s += a s = (1 << wp) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) return s else: wp = mp.prec + extra1 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) sre = are = bre = xre sim = aim = bim = xim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s else: if isinstance(q, mpf) and isinstance(z, mpf): s = MP_ZERO wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x * x) >> wp c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 s += (a * cn) >> wp while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp cn, sn = (cn * c1 - sn * s1) >> wp, (sn * c1 + cn * s1) >> wp s += (a * cn) >> wp s = (1 << wp) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) return s # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 sre = (are * cn) >> wp sim = (aim * cn) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn * c1 - sn * s1) >> wp, (sn * c1 + cn * s1) >> wp sre += (are * cn) >> wp sim += (aim * cn) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x * x) >> wp prec0 = mp.prec mp.prec = wp c1 = cos(2 * z) s1 = sin(2 * z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) sre = (a * cnre) >> wp sim = (a * cnim) >> wp while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp t1 = (cnre * c1re - cnim * c1im - snre * s1re + snim * s1im) >> wp t2 = (cnre * c1im + cnim * c1re - snre * s1im - snim * s1re) >> wp t3 = (snre * c1re - snim * c1im + cnre * s1re - cnim * s1im) >> wp t4 = (snre * c1im + snim * c1re + cnre * s1im + cnim * s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (a * cnre) >> wp sim += (a * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = mp.prec mp.prec = wp # cos(2*z), sin(2*z) with z complex c1 = cos(2 * z) s1 = sin(2 * z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre * c1re - cnim * c1im - snre * s1re + snim * s1im) >> wp t2 = (cnre * c1im + cnim * c1re - snre * s1im - snim * s1re) >> wp t3 = (snre * c1re - snim * c1im + cnre * s1re - cnim * s1im) >> wp t4 = (snre * c1im + snim * c1re + cnre * s1im + cnim * s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (are * cnre - aim * cnim) >> wp sim += (aim * cnre + are * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s
def _djacobi_theta2(z, q, nd): MIN = 2 extra1 = 10 extra2 = 20 if isinstance(q, mpf) and isinstance(z, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x * x) >> wp a = b = x2 c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1 * c1 - s1 * s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp if (nd & 1): s = s1 + ((a * sn * 3**nd) >> wp) else: s = c1 + ((a * cn * 3**nd) >> wp) n = 2 while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp if nd & 1: s += (a * sn * (2 * n + 1)**nd) >> wp else: s += (a * cn * (2 * n + 1)**nd) >> wp n += 1 s = -(s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1 * c1 - s1 * s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp if (nd & 1): sre = s1 + ((are * sn * 3**nd) >> wp) sim = ((aim * sn * 3**nd) >> wp) else: sre = c1 + ((are * cn * 3**nd) >> wp) sim = ((aim * cn * 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn * c2 - sn * s2) >> wp, (sn * c2 + cn * s2) >> wp if (nd & 1): sre += ((are * sn * n**nd) >> wp) sim += ((aim * sn * n**nd) >> wp) else: sre += ((are * cn * n**nd) >> wp) sim += ((aim * cn * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) x2 = (x * x) >> wp a = b = x2 prec0 = mp.prec mp.prec = wp c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re * c1re - c1im * c1im - s1re * s1re + s1im * s1im) >> wp c2im = (c1re * c1im - s1re * s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re * s1re - c1im * s1im) >> (wp - 1) s2im = (c1re * s1im + c1im * s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd & 1): sre = s1re + ((a * snre * 3**nd) >> wp) sim = s1im + ((a * snim * 3**nd) >> wp) else: sre = c1re + ((a * cnre * 3**nd) >> wp) sim = c1im + ((a * cnim * 3**nd) >> wp) n = 5 while abs(a) > MIN: b = (b * x2) >> wp a = (a * b) >> wp t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd & 1): sre += ((a * snre * n**nd) >> wp) sim += ((a * snim * n**nd) >> wp) else: sre += ((a * cnre * n**nd) >> wp) sim += ((a * cnim * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre * xre - xim * xim) >> wp x2im = (xre * xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = mp.prec mp.prec = wp # cos(2*z), siz(2*z) with z complex c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) c2re = (c1re * c1re - c1im * c1im - s1re * s1re + s1im * s1im) >> wp c2im = (c1re * c1im - s1re * s1im) >> (wp - 1) s2re = (c1re * s1re - c1im * s1im) >> (wp - 1) s2im = (c1re * s1im + c1im * s1re) >> (wp - 1) t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd & 1): sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) sim = s1im + (((are * snim + aim * snre) * 3**nd) >> wp) else: sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) sim = c1im + (((are * cnim + aim * cnre) * 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre * c2re - cnim * c2im - snre * s2re + snim * s2im) >> wp t2 = (cnre * c2im + cnim * c2re - snre * s2im - snim * s2re) >> wp t3 = (snre * c2re - snim * c2im + cnre * s2re - cnim * s2im) >> wp t4 = (snre * c2im + snim * c2re + cnre * s2im + cnim * s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd & 1): sre += (((are * snre - aim * snim) * n**nd) >> wp) sim += (((aim * snre + are * snim) * n**nd) >> wp) else: sre += (((are * cnre - aim * cnim) * n**nd) >> wp) sim += (((aim * cnre + are * cnim) * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) s *= nthroot(q, 4) if (nd & 1): return (-1)**(nd // 2) * s else: return (-1)**(1 + nd // 2) * s
def sin(self): return F.sin(self)