def diffusivityDistance(binned, fig=0, ax=0, i=-1): p = inf.getInputParameters() if binned: d = inf.readBinnedAverages() else: d = inf.readAverages() cove = d.getRecomputedCoverage() / p.sizI / p.sizJ ratios = p.getRatios() Na = cove * p.sizI * p.sizJ fig = plt.figure(num=33, figsize=(6, 5)) ax = plt.gca() x = cove cm = plt.get_cmap("Accent") alpha = 0.5 handles = [] hops = fun.timeDerivative(d.hops, d.time) / (4 * Na) lg, = ax.loglog( x, hops, label=r"$\frac{l^2}{2dN_a} \; \frac{d\langle N_h\rangle}{dt}$", marker="+", ls="", mew=1, markeredgecolor=cm(7 / 8), ms=7, alpha=alpha) handles.append(lg) Malpha = inf.readPossibleFromList() for l in range(0, 4): Malpha[l] = fun.timeDerivative(Malpha[l], d.time) individualHopsCalc = [] individualHopsCalc.append((Malpha[0] * ratios[0]) / (4 * Na)) individualHopsCalc.append((Malpha[1] * ratios[8]) / (4 * Na)) individualHopsCalc.append((Malpha[2] * ratios[15]) / (4 * Na)) individualHopsCalc.append((Malpha[3] * ratios[24]) / (4 * Na)) hopsCalc = np.sum(individualHopsCalc, axis=0) lgC, = plt.loglog(x, hopsCalc, "-", label="hops calc") # marker="*", ls="", mew=mew, markerfacecolor=cm(5/8), ms=5, alpha=alpha) lg, = plt.loglog(x, individualHopsCalc[0], "-", label="hops calc0") handles.append(lg) lg, = plt.loglog(x, individualHopsCalc[1], "-", label="hops calc1") #, handles.append(lg) lg, = plt.loglog(x, individualHopsCalc[2], "-", label="hops calc2") # handles.append(lg) lg, = plt.loglog(x, individualHopsCalc[3], "-", label="hops calc3") # handles.append(lg) handles.append(lgC) ax.grid() ax.set_xlabel(r"$\theta$", size=16) #ax.set_ylim([1e-7,1e13]) ax.set_xlim([1e-5, 1e0]) ax.legend(loc="best", prop={'size': 6}) #ax.legend(handles=handles, loc=(0.46,0.3), numpoints=1, prop={'size':15}, markerscale=2) fig.savefig("../../../plot" + str(p.flux) + str(p.temp) + ".png") plt.close(33)
def computeMavgAndOmega(fileNumber, p): d = info.readAverages() cove = d.getRecomputedCoverage()/p.sizI/p.sizJ Na = cove * p.sizI * p.sizJ matrix = np.loadtxt(fname="data"+str(fileNumber)+".txt", delimiter="\t") possiblesFromList = np.loadtxt(fname="possibleFromList"+str(fileNumber)+".txt") possiblesFromList = possiblesFromList[:,1:] # remove coverage time = np.array(matrix[:,1]) length = len(time) hops = np.array(matrix[:,15]) ratios = p.getRatios() Mavg = np.zeros(shape=(length,p.maxA)) Mder = np.zeros(shape=(length,p.maxA)) for i in range(0,p.maxA): # iterate alfa Mavg[:,i] = possiblesFromList[:,i] Mder[:,i] = fun.timeDerivative(Mavg[:,i], time)/(4*Na) hops = fun.timeDerivative(hops, time)/(4*Na) avgTotalHopRate3 = np.array(ratios.dot(np.transpose(Mder))) avgTotalHopRate1 = hops#/time # define omegas AgUc omega = np.zeros(shape=(length,p.maxA)) # [coverage, alfa] for i in range(0,length): omega[i,:] = Mder[i,:] * ratios / avgTotalHopRate3[i] np.shape(omega) return Mder, omega, avgTotalHopRate1, avgTotalHopRate3
def diffusivityDistance(binned, fig=0, ax=0, i=-1): p = inf.getInputParameters() if binned: d = inf.readBinnedAverages() else: d = inf.readAverages() cove = d.getRecomputedCoverage()/p.sizI/p.sizJ ratios = p.getRatios() Na = cove * p.sizI * p.sizJ fig = plt.figure(num=33, figsize=(6,5)) ax = plt.gca() x = list(range(0,len(d.time))) x = cove cm = plt.get_cmap("Accent") alpha = 0.5 mew = 0 diff = fun.timeDerivative(d.diff, d.time)/(4*Na) handles = [] #lg, = ax.loglog(x, d.diff/d.time/(4*Na), label=r"$\frac{1}{2dN_a} \; \frac{\langle R^2\rangle}{t}$", ls="-", color=cm(3/8), lw=2); handles.append(lg) lg, = ax.loglog(x, d.hops/d.time/(4*Na), label=r"$\frac{l^2}{2dN_a} \; \frac{\langle N_h\rangle}{t}$", marker="x", color=cm(4.1/8), ls="", solid_capstyle="round",lw=5); handles.append(lg) Malpha = inf.readPossibleFromList()#/d.time MalphaP = inf.readInstantaneous(False) for k in range(0,4): Malpha[k] = Malpha[k]/d.time label = r"$\theta_{"+str(k)+"}$" lg, = ax.loglog(x, fun.timeAverage(d.negs[k]/p.sizI/p.sizJ, d.time), label=label, ms=1, lw=2, ls="-", color=cm(k/8)); handles.append(lg) #lg, = plt.loglog(x, MalphaP[k]/d.negs[k], label=r"$m_"+str(k)+"$"); handles.append(lg) # Around 6, 2, 2, 0.1 individualHopsCalc = [] individualHopsCalc.append((Malpha[0]*ratios[0])/(4*Na)) individualHopsCalc.append((Malpha[1]*ratios[8])/(4*Na)) individualHopsCalc.append((Malpha[2]*ratios[15])/(4*Na)) individualHopsCalc.append((Malpha[3]*ratios[24])/(4*Na)) lg, = plt.loglog(x, individualHopsCalc[0], label="hops calc0") handles.append(lg) lg, = plt.loglog(x, individualHopsCalc[1], label="hops calc1")#, handles.append(lg) lg, = plt.loglog(x, individualHopsCalc[2], label="hops calc2")# handles.append(lg) lg, = plt.loglog(x, individualHopsCalc[3], label="hops calc3")# handles.append(lg) hopsCalc = np.sum(individualHopsCalc, axis=0) lgC, = plt.loglog(x, hopsCalc, label="hops calc") # marker="*", ls="", mew=mew, markerfacecolor=cm(5/8), ms=5, alpha=alpha) handles.append(lgC) ax.grid() ax.set_xlabel(r"$\theta$", size=16) #ax.set_ylim([1e-7,1e13]) ax.set_xlim([1e-5,1e0]) ax.legend(loc="best", prop={'size':6}) #ax.legend(handles=handles, loc=(0.46,0.3), numpoints=1, prop={'size':15}, markerscale=2) fig.savefig("../../../plot"+str(p.flux)+str(p.temp)+".png") plt.close(33)
def computeError(ax1=0, ax2=0, i=-1, t=150): p = inf.getInputParameters() d = inf.readAverages() cove = d.getRecomputedCoverage() / p.sizI / p.sizJ ratios = p.getRatios() Na = cove * p.sizI * p.sizJ x = list(range(0, len(d.time))) x = cove cm1 = plt.get_cmap("coolwarm_r") cm2 = plt.get_cmap("coolwarm_r") alpha = 0.5 mew = 0 handles = [] ax1.loglog(x, d.diff / d.hops, label=str(t) + " K", ls="-", color=cm1(i / 21), lw=1) diff = fun.timeDerivative(d.diff, d.time) / (4 * Na) hops = fun.timeDerivative(d.hops, d.time) / (4 * Na) ax2.loglog(x, abs(diff / hops), label=str(t) + " K", ls="-", color=cm2(i / 21), lw=1) setUpPlot(ax1, p) ax1.set_ylabel(r"$f_T=\frac{\langle R^2 \rangle}{l^2\langle N_h \rangle}$") ax1.set_yscale("linear") ax1.set_ylim(0, 2) setUpPlot(ax2, p) ax2.set_ylabel( r"$\frac{\langle R^2\rangle / dt}{l^2d\langle N_h\rangle / dt}$") if p.calc == "basic": addColorBar(fig1, p, i)
def ratioplicity(ax): d = inf.readAverages() p = inf.getInputParameters() cove = d.getRecomputedCoverage() / p.sizI / p.sizJ x = cove maxI = 7 maxJ = 7 maxK = 4 handles = [] Malpha, Mij = inf.readInstantaneous(False) Mij = Mij.reshape(len(Mij), 7, 7) #mAlpha, trash = inf.readDiscrete() trash, Mij = inf.readPossibles() m = [] Mij = Mij.reshape(len(Mij), 7, 7) for i in range(0, 7): for j in range(0, 7): Mij[:, i, j] = fun.timeDerivative(Mij[:, i, j], d.time) mij = np.zeros(len(Mij) * 49).reshape(len(Mij), 7, 7) for i in range(0, 4): m.append(Malpha[i] / d.negs[i]) label = r"$m_" + str(i) + "}$" lg, = plt.loglog(x, Malpha[i] / d.negs[i], label=label) handles.append(lg) # Around 6,2,2,0.1 #lg, = plt.loglog(x, m[i]/(mAlpha[i]/Malpha[i]), label=str(i)); handles.append(lg) # for i in range(0,7): # for j in range(0,7): # label=r"$m_{"+str(i)+str(j)+"}$" # lg, = plt.loglog(x, Mij[:,i,j]/d.negs[i], label=label); handles.append(lg) # Around 6,2,2,0.1 for i in range(0, maxI): for j in range(0, maxJ): #mij[:,i,j] = Mij[:,i,j]/(d.negs[i] + 1e-16) for coverage in range(0, len(Mij)): if d.negs[i][coverage] == 0: mij[coverage, i, j] = 0 else: mij[coverage, i, j] = Mij[coverage, i, j] / d.negs[i][coverage] label = r"$m_{" + str(i) + str(j) + "}$" #lg, = plt.loglog(x, mij[:,i,j], ls=":", label=label); handles.append(lg) # Around 6,2,2,0.1 #lg, = plt.loglog(x, mij[:,i,j], "o",label=r"$m_ij "+str(i)); handles.append(lg) #mij = fun.timeAverage(mij, d.time) ########################################################################################## ratios = p.getRatios().reshape(7, 7) numerator = np.zeros(len(Mij)) W = [] i = 0 j = 1 print(np.shape(mij)) print("kk", mij[:, 0, :]) W.append(compute(i, j, mij, ratios, maxK)) i = 1 j = 0 W.append(compute(i, j, mij, ratios, maxK)) i = 2 j = 1 W.append(compute(i, j, mij, ratios, maxK)) i = 3 j = 2 W.append(compute(i, j, mij, ratios, maxK)) ######################################################################################## cm1 = plt.get_cmap("Set1") bbox_props = dict(boxstyle="round", fc="w", ec="1", alpha=0.7, pad=0.1) ax.loglog(x, np.ones(len(x)), color="black") markers = ["x", "s", "o", "^", "h", "p", "d"] sum = d.negs[0] / cove / p.sizI / p.sizJ for k in range(0, 4): label = r"$\theta_" + str(k) + r"\cdot 10^4$" ax.loglog(x, d.negs[k] / cove / p.sizI / p.sizJ, label=label, ms=3, lw=1, ls="-", color=cm1(k / 8)) index = np.where(d.negs[k] > 0)[0][2] ax.text(x[index], d.negs[k][index] / cove[index] / p.sizI / p.sizJ, r"$W_{" + str(k) + r"}$", color=cm1(k / 8), bbox=bbox_props) sum += d.negs[k] / cove / p.sizI / p.sizJ #ax.loglog(x, sum, "x") for i in range(0, maxK): lg, = ax.loglog(x, W[i], ls="--", marker=markers[i], label="W temp" + str(i)) handles.append(lg) #ax.text(x[index],d.negs[k][index]/cove[index], r"$W_{"+str(k)+r"^\nu}$", color=cm1(k/8), bbox=bbox_props) #W = np.array(W) #print(np.shape(W)) #lg, = ax.loglog(x, np.sum(W, axis=0), "+", label="W sum"); handles.append(lg) plt.legend(handles=handles, loc="best")
loglog(d.cove, sum, "3") figure(1001) i = 0 sum = np.zeros(len(Mij)) for j in range(3, -1, -1): loglog(d.cove, W[i] * np.sum(mu[:, i, j:4], axis=1)) #for j in range(0,4): sum = sum + W[j] * mu[:, j, i] loglog(d.cove, sum, "3") trash, Mij = inf.readDiscrete() Mij = Mij.reshape(len(Mij), 7, 7) for i in range(0, 7): for j in range(0, 7): Mij[:, i, j] = fun.timeDerivative(Mij[:, i, j], d.time) i = 0 sum = np.zeros(len(Mij)) sumkj = np.zeros(len(Mij)) sumki = np.zeros(len(Mij)) figure(1002) sumki = p.flux / (1 - d.cove) / p.sizI / p.sizJ * np.sum(Mij[:, :, i], axis=1) for j in range(3, -1, -1): sumkj = np.sum(Mij[:, :, j], axis=1) fL = W[i] * mu[:, i, j] + p.flux / (1 - d.cove) / p.sizI / p.sizJ * sumkj loglog(d.cove, fL) sum = W[j] * mu[:, j, i] sumki = 0 fR = sum + sumki loglog(d.cove, fR, "3")
def allSlopes(x, y): return fun.timeDerivative(np.log(y), x)
def diffusivityDistance(debug, smooth, smoothCalc, binned, readMultiplicities): p = inf.getInputParameters() if binned: d = inf.readBinnedAverages() else: d = inf.readAverages() cove = d.getRecomputedCoverage() / p.sizI / p.sizJ ratios = p.getRatios() Na = cove * p.sizI * p.sizJ plt.clf() x = list(range(0, len(d.time))) x = cove cm = plt.get_cmap("Accent") alpha = 0.5 mew = 0 diff = fun.timeDerivative(d.diff, d.time) / (4 * Na) handles = [] if readMultiplicities: Malpha = inf.readInstantaneous() lg, = plt.loglog(x, Malpha[0] / d.negs[0], label=r"$\frac{m_0}{n_0}$") handles.append(lg) # Around 6 lg, = plt.loglog(x, Malpha[1] / d.negs[1], label=r"$\frac{m_1}{n_1}$") handles.append(lg) # Around 2 lg, = plt.loglog(x, Malpha[2] / d.negs[2], label=r"$\frac{m_2}{n_2}$") handles.append(lg) # Around 2 lg, = plt.loglog(x, Malpha[3] / d.negs[3], label=r"$\frac{m_3}{n_3}$") handles.append(lg) # Around 0.1 lgR, = plt.loglog(x, diff, label=r"$\frac{1}{2dN_a} \; \frac{d(R^2)}{dt}$", marker="s", ls="", mew=mew, markerfacecolor=cm(0 / 8), ms=8, alpha=alpha) hops = fun.timeDerivative(d.hops, d.time) / (4 * Na) lgN, = plt.loglog(x, hops, label=r"$\frac{l^2}{2dN_a} \; \frac{d(N_h)}{dt}$", marker="p", ls="", mew=mew, markerfacecolor=cm(7 / 8), ms=7, alpha=alpha) lgRh, = plt.loglog(x, d.prob / (4 * Na), label=r"$\frac{l^2}{2dN_a} R_{h} $", marker="o", ls="", mew=mew, markerfacecolor=cm(1 / 8), ms=5.5, alpha=alpha) #coverages cm1 = plt.get_cmap("Set1") lg, = plt.loglog(x, cove, label=r"$\theta$", color=cm1(1 / 9)) handles.append(lg) for k in range(0, 7): if k < 4: label = r"${n_" + str(k) + "}$" lg, = plt.loglog(x, d.negs[k] / p.sizI / p.sizJ, label=label, ms=1, marker=".", color=cm1((k + 2) / 9)) if smooth: ySmooth = np.exp(savgol_filter(np.log(d.negs[k]), 9, 1)) plt.loglog(x, ySmooth / p.sizI / p.sizJ, lw=2) d.negs[k] = ySmooth handles.append(lg) hopsCalc0 = (6 * d.negs[0] * ratios[0]) / (4 * Na) lgCAll = [] if debug: lgC0, = plt.loglog(x, hopsCalc0, "p-", label="hops calc0") lgCAll.append(lgC0) hopsCalc1 = (2 * d.negs[1] * ratios[8]) / (4 * Na) lgC1, = plt.loglog(x, hopsCalc1, "x-", label="hops calc1") #, lgCAll.append(lgC1) hopsCalc2 = (2 * d.negs[2] * ratios[15]) / (4 * Na) lgC2, = plt.loglog(x, hopsCalc2, "o-", label="hops calc2") # lgCAll.append(lgC2) hopsCalc3 = (0.1 * d.negs[3] * ratios[24]) / (4 * Na) lgC3, = plt.loglog(x, hopsCalc3, "*-", label="hops calc3") # lgCAll.append(lgC3) else: lgC0, = plt.loglog(x, hopsCalc0, label="hops calc0", marker="", ls=":", mew=mew, color=cm(8 / 8), ms=4, alpha=1) lgCAll.append(lgC0) if p.calc == "AgUc": hopsCalc = (6 * d.negs[0] * ratios[0] + 2 * d.negs[1] * ratios[8] + 2 * d.negs[2] * ratios[15] + 0.1 * d.negs[3] * ratios[24]) / (4 * Na) if smoothCalc: hopsCalc = np.exp(savgol_filter(np.log(hopsCalc), 9, 1)) lgC, = plt.loglog(x, hopsCalc, label="hops calc", marker="*", ls="", mew=mew, markerfacecolor=cm(5 / 8), ms=5, alpha=alpha) handles = [lgR, lgN, lgRh, lgC] + lgCAll + handles else: handles = [lgR, lgN, lgRh, lgC0] + handles plt.subplots_adjust(left=0.12, bottom=0.1, right=0.7, top=0.9, wspace=0.2, hspace=0.2) plt.legend(handles=handles, numpoints=1, prop={'size': 8}, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.grid() plt.title("flux: {:.1e} temperature: {:d} size {:d}x{:d} \n {}".format( p.flux, int(p.temp), p.sizI, p.sizJ, os.getcwd()), fontsize=10) plt.savefig("../../../plot" + str(p.flux) + str(p.temp) + ".png")