Пример #1
0
 def test_eq(self, low, high, res):
     """This also tests Set.array().
     This test can massively slow down hypothesis with even
     reasonably large/small values.
     """
     assume(low < high)
     # to avoid MemoryError and runs that take forever..
     assume(high - low <= 10)
     D1 = Domain("1", low, high, res=res)
     D1.s1 = fun.bounded_linear(low, high)
     D2 = Domain("2", low, high, res=res)
     D2.s2 = Set(fun.bounded_linear(low, high))
     assert D1.s1 == D2.s2
Пример #2
0
def test_rating():
    """Tom is surveying restaurants.
    He doesn't need fancy logic but rather uses a simple approach
    with weights.
    He went into a small, dirty bar that served some
    really good drink and food that wasn't nicely arranged but still
    yummmy. He rates the different factors on a scale from 1 to 10,
    uses a bounded_linear function to normalize over [0,1] and
    passes both the weights (how much each aspect should weigh in total)
    and the domain as parameters into weighted_sum.
    However, he can't just use Domain(value) because that would return
    a dict of memberships, instead he uses Domain.min(value) which
    returns the minimum of all memberships no matter how many sets
    there are. He creates a dict of membership values corresponding to
    the weights and passes that into the parametrized weighted_sum func
    as argument to get the final rating for this restaurant.
    """
    R = Domain("rating", 1, 10, res=0.1)
    R.norm = bounded_linear(1, 10)
    weights = {"beverage": 0.3, "atmosphere": 0.2, "looks": 0.2, "taste": 0.3}
    w_func = weighted_sum(weights=weights, target_d=R)

    ratings = {
        "beverage": R.min(9),
        "atmosphere": R.min(5),
        "looks": R.min(4),
        "taste": R.min(8),
    }
    assert w_func(ratings) == 6.9
Пример #3
0
 def test_basics(self):
     D = Domain("d", 0, 10)
     assert D._name == "d"
     assert D._low == 0
     assert D._high == 10
     assert D._res == 1
     x = Set(lambda x: 1)
     D.s = x
     assert D.s == x
     assert D._sets == {"s": x}
     R = D(3)
     assert R == {D.s: 1}
Пример #4
0
def simple():
    d = Domain("simple", 0, 10)
    d.low = S(0, 1)
    d.high = R(8, 10)
    return d
Пример #5
0
def temp():
    d = Domain("temperature", -100, 100, res=0.1)  # in Celsius
    d.cold = S(0, 15)  # sic
    d.hot = Set(R(10, 30))  # sic
    d.warm = ~d.cold & ~d.hot
    return d
Пример #6
0
 def test_complement(self):
     D = Domain("d", 0, 10, res=0.1)
     D.s1 = Set(fun.bounded_linear(3, 12))
     D.s2 = ~~D.s1
     assert all(np.isclose(D.s1.array(), D.s2.array()))
Пример #7
0
 def test_sub_super_set(self):
     D = Domain("d", 0, 10, res=0.1)
     D.s = Set(fun.bounded_linear(3, 12))
     D.x = D.s.normalized()
     assert D.x >= D.s
     assert D.s <= D.x
Пример #8
0
 def test_normalized(self):
     D = Domain("d", 0, 10, res=0.1)
     D.s = Set(fun.bounded_linear(3, 12))
     D.x = D.s.normalized()
     D.y = D.x.normalized()
     assert D.x == D.y
Пример #9
0
import numpy as np

import helper

import copy

import fuzzylogic as fuzzy

from fuzzylogic.classes import Domain
import fuzzylogic.functions as ff

DEGTORAD = math.pi/180.0
RADTODEG = 180.0/math.pi

# Defining the main fuzzy domains
Ang = Domain("diff_theta", -180, 180, res=1)
Ang.zero = ff.triangular(-3,3)

Ang.p_small = ff.trapezoid(0, 3, 5, 10)
Ang.n_small = ff.trapezoid(-10,-5,-3,0)

Ang.small = Ang.p_small | Ang.n_small

Ang.p_med = ff.trapezoid(5, 10, 40, 50)
Ang.n_med = ff.trapezoid(-50,-40,-10,-5)

Ang.med = Ang.p_med | Ang.n_med

Ang.p_big = ff.trapezoid(40, 50, 80, 100)
Ang.n_big = ff.trapezoid(-100, -80, -50, -40)
Пример #10
0
from pathlib import Path

src = str((Path(__file__).parent / "../src").resolve())
sys.path.insert(0, src)

import numpy as np

from fuzzylogic.classes import Domain
from fuzzylogic.classes import Rule
from fuzzylogic.classes import Set
from fuzzylogic.functions import R
from fuzzylogic.functions import S
from fuzzylogic.functions import trapezoid

temp = Domain("Temperatur", -30, 100, res=0.0001)  # ,res=0.1)
temp.kalt = S(-10, 30)
temp.heiß = R(30, 70)
temp.mittel = ~temp.heiß & ~temp.kalt

tan = Domain("tandelta", 0, 1.3, res=0.0001)  # ,res=0.1)
tan.klein = S(0.1, 0.5)
tan.groß = R(0.5, 0.9)
tan.mittel = ~tan.groß & ~tan.klein

gef = Domain("Gefahrenbewertung", -0.5, 1.5, res=0.0001)  # ,res=0.1)
gef.klein = trapezoid(-0.5, 0, 0, 0.5)
gef.groß = trapezoid(0.5, 1, 1, 1.5)
gef.mittel = trapezoid(0, 0.5, 0.5, 1)

R1 = Rule({(temp.kalt, tan.klein): gef.klein})