def dispersed_init(k, params):
    #initial = random_init(len(beliefs))
    #initial = initial_using_actual(actual, len(beliefs))
    state = {}
    wp_apart = [[.1, .9], [.5, .5], [.9, .1]]
    sm_apart = [np.array([[.5, .4], [.5, .6]]), np.array([[.9, .8], [.1, .2]]),
                np.array([[.1, .05], [.9, .95]])]
    worlds_apart = [0, 1, 0]
    state['wp'] = wp_apart[k]
    state['sm'] = sm_apart[k]
    state['world'] = worlds_apart[k]
    state['signals'] = fwd.sample_signals(state['world'], state['sm'], 
                                          params['num_responses'])
    state['meta_noise'] = params['meta_noise']
    if params['fixed_noise']:
        state['own_noise'] = params['own_noise']
    else:
        state['own_noise'] = .25
    return state
Пример #2
0
def wp_expt(sm=np.array([[.7, .4], [.3, .6]]), wp=np.array([.1, .9]),
            change_wp=True):
    params = setup_params.init_params_demo1()
    params['binary_beliefs'] = False
    indiv = fwd.generate_individual(params)
    grid = 100
    diff = 0
    res0 = np.zeros((grid-grid*diff, grid-grid*diff))
    res1 = np.zeros((grid-grid*diff, grid-grid*diff))
    bm0 = np.zeros((grid-grid*diff, grid-grid*diff))
    bm1 = np.zeros((grid-grid*diff, grid-grid*diff))
    mm0 = np.zeros((grid-grid*diff, grid-grid*diff))
    mm1 = np.zeros((grid-grid*diff, grid-grid*diff))
    mm0avg = np.zeros((grid-grid*diff, grid-grid*diff))
    #hacky since grid needn't be nice num.:
    for k, gen in enumerate(np.arange(diff * grid, grid)):  
        actual = {}
        gen_s0 = gen / grid + .01
        if change_wp:
            gen_wp = np.array([gen_s0, 1 - gen_s0])
            actual['wp'] = gen_wp

            actual['sm'] = sm
        else:
            actual['wp'] = wp
            gen_sm = np.array([[gen_s0, gen_s0 - diff],
                               [1 - gen_s0, 1 - gen_s0 + diff]])
            actual['sm'] = gen_sm
        actual['world'] = 0
        actual['signals'] = fwd.sample_signals(actual['world'], actual['sm'], 
                                               params['num_responses'])
        beliefs, meta = fwd.generate_data(actual, indiv, params)
        for j, ans in enumerate(np.arange(grid*diff, grid)):
            ans_s0 = ans / grid + .01
            if change_wp:
                ans_wp = np.array([ans_s0, 1 - ans_s0])
                ans_sm = actual['sm']
            else:
                ans_wp = actual['wp']
                ans_sm = np.array([[ans_s0, ans_s0 - diff],
                                   [1 - ans_s0, 1 - ans_s0 + diff]])
            ll = np.array([aggregation.reports_ll_marg(beliefs, meta, w,
                                                       ans_sm, ans_wp, 
                                                       indiv['own_noise'],
                                                       indiv['meta_noise'], 
                                                       params)
                                                       for w in [0, 1]])
            ll += aggregation.log_prob_world(actual['world'], ans_wp)
            bel = fwd.calc_belief_matrix(ans_sm, ans_wp)
            bm0[k, j] = bel[0,0]
            bm1[k, j] = bel[0,1]
            met = fwd.calc_meta_matrix(ans_sm, ans_wp)
            mm0[k, j] = met[0,0]
            mm1[k, j] = met[0,1]
            if bel[0, 0] < .5:
                mm0avg[k,j] = 0
            elif bel[0, 1] > .5:
                mm0avg[k,j] = 1
            else:
                mm0avg[k,j] = met[0,0]
                
            if bel[0, 1] > .5:
                non_bij = 1
            elif bel[0,0] < .5:
                non_bij = -1
            else:
                non_bij = 0
            res0[k, j] = ll[0]
            res1[k, j] = ll[1]
    plt.imshow(res0, cmap=cm.Greys_r)
    plt.imshow(res1, cmap=cm.Greys_r)
    1/0
    return res