def market_data_panel(self, freq="D"): start, end = self.date_range df = DataAPI.candle(self.universe, start=start, end=end, freq=freq).transpose(2, 1, 0) if freq == "D": df.major_axis = df.major_axis.normalize() return df
def read_benchmark(start, end, index_code="000300.XSHG", freq="D"): """ 获取指数行情数据 :param start:起始时间(datetime) :param end:结束时间(datetime) :param index_code:指数代码(str) :param freq:数据频率(str) :return:指数行情。返回一个benchmark对象 包含五个属性。"index", "close", "open", "high", "low"。 "index":一个MultiIndex Series的序列。索引为date (level 0) 和 asset (level 1),包含一列factor值。其中asset的值固定是index_code, factor值固定是1。用于fxdayu_alphaman.selector.selector_analysis.get_stocklist_mean_return中 作为stock_list参数来计算指数收益。 "close":收盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的收盘价。 "open":开盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的开盘价。 "high":最高价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最高价。 "low":最低价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最低价。 """ benchmark = Benchmark() benchmark_value = DataAPI.candle((index_code,), freq=freq, start=start, end=end) benchmark.open = benchmark_value.minor_xs("open") if len(benchmark.open)==0: raise ValueError benchmark.high = benchmark_value.minor_xs("high") benchmark.low = benchmark_value.minor_xs("low") benchmark.close = benchmark_value.minor_xs("close") benchmark.open.index.name = "date" benchmark.high.index.name = "date" benchmark.low.index.name = "date" benchmark.close.index.name = "date" benchmark.index = pd.DataFrame(data=benchmark.open.index) benchmark.index["asset"] = index_code benchmark.index["factor"] = 1 benchmark.index = benchmark.index.set_index(["date", "asset"]) return benchmark
def get_price_data(pool, start, end, max_window=10): data = DataAPI.candle( tuple(pool), "D", start=start - datetime.timedelta(days=max_window), end=end + datetime.timedelta(days=max_window)) data = data.replace(to_replace=0, value=np.NaN) return data
def market_data(self): start, end = self.date_range df = DataAPI.candle(self.universe, fields=["close"], start=start, end=end, freq=self._freq).loc[:, :, "close"].T df.index.name = "order_book_id" series = df.stack() series.name = "close" return series
def benchmark_rets(self, code="000300.XSHG", freq="D", isIndex=True): start, end = self.date_range adjust = None if not isIndex: adjust = "before" benchmark = DataAPI.candle(code, freq=freq, fields="close", start=start, end=end, adjust=adjust) benchmark_rets = benchmark["close"].pct_change() benchmark_rets.name = "benchmark_rets" if freq == "D": benchmark_rets.index = benchmark_rets.index.normalize() return benchmark_rets
def read_benchmark(start, end, index_code="000300.XSHG", freq="D"): """ 获取指数行情数据 :param start:起始时间(datetime) :param end:结束时间(datetime) :param index_code:指数代码(str) :param freq:数据频率(str) :return:指数行情。返回一个benchmark对象 包含五个属性。"index", "close", "open", "high", "low"。 "index":一个MultiIndex Series的序列。索引为date (level 0) 和 asset (level 1),包含一列factor值。其中asset的值固定是index_code, factor值固定是1。用于fxdayu_alphaman.selector.selector_analysis.get_stocklist_mean_return中 作为stock_list参数来计算指数收益。 "close":收盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的收盘价。 "open":开盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的开盘价。 "high":最高价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最高价。 "low":最低价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最低价。 """ benchmark = Benchmark() try: benchmark_value = DataAPI.candle((index_code, ), freq=freq, start=start, end=end) benchmark.open = benchmark_value.minor_xs("open") if len(benchmark.open) == 0: raise ValueError benchmark.high = benchmark_value.minor_xs("high") benchmark.low = benchmark_value.minor_xs("low") benchmark.close = benchmark_value.minor_xs("close") benchmark.open.index.name = "date" benchmark.high.index.name = "date" benchmark.low.index.name = "date" benchmark.close.index.name = "date" except: index_value = ts.get_k_data(code=index_code[0:6], start=start.strftime("%Y-%m-%d"), end=end.strftime("%Y-%m-%d"), ktype=freq, index=True) date = index_value.pop('date') index_value["date"] = pd.to_datetime(date + " 15:00:00", format='%Y-%m-%d %H:%M:%S') benchmark.close = index_value[["date", "close"]] benchmark.open = index_value[["date", "open"]] benchmark.high = index_value[["date", "high"]] benchmark.low = index_value[["date", "low"]] benchmark.close.columns = ["date", index_code] benchmark.open.columns = ["date", index_code] benchmark.high.columns = ["date", index_code] benchmark.low.columns = ["date", index_code] benchmark.close = benchmark.close.set_index("date") benchmark.open = benchmark.open.set_index("date") benchmark.high = benchmark.high.set_index("date") benchmark.low = benchmark.low.set_index("date") benchmark.index = pd.DataFrame(data=benchmark.open.index) benchmark.index["asset"] = index_code benchmark.index["factor"] = 1 benchmark.index = benchmark.index.set_index(["date", "asset"]) return benchmark
from fxdayu_data import DataAPI print(DataAPI.candle("000001.XSHE"))