Пример #1
0
 def locally_optimize(self,
                      kf_ref,
                      verbose=False,
                      rounds=10,
                      abort_flag=g2o.Flag()):
     keyframes, points, ref_keyframes = self.local_map.update(kf_ref)
     print('local optimization window: ',
           sorted([kf.id for kf in keyframes]))
     print('                     refs: ',
           sorted([kf.id for kf in ref_keyframes]))
     print('                   #points: ', len(points))
     #print('                   points: ', sorted([p.id for p in points]))
     #err = optimizer_g2o.optimize(frames, points, None, False, verbose, rounds)
     err, ratio_bad_observations = optimizer_g2o.local_bundle_adjustment(
         keyframes,
         points,
         ref_keyframes,
         False,
         verbose,
         rounds,
         abort_flag=abort_flag,
         map_lock=self.update_lock)
     Printer.green('local optimization - perc bad observations: %.2f %%' %
                   (ratio_bad_observations * 100))
     return err
Пример #2
0
    def __init__(self, map):
        self.map = map
        
        self.recently_added_points = set()
        
        self.kf_cur = None   # current processed keyframe  
        self.kid_last_BA = -1 # last keyframe id when performed BA  
        
        self.descriptor_distance_sigma = Parameters.kMaxDescriptorDistance            

        self.timer_verbose = kTimerVerbose  # set this to True if you want to print timings  
        self.timer_triangulation = TimerFps('Triangulation', is_verbose = self.timer_verbose)    
        self.timer_pts_culling = TimerFps('Culling points', is_verbose = self.timer_verbose)              
        self.timer_pts_fusion = TimerFps('Fusing points', is_verbose = self.timer_verbose)          
        self.time_local_opt = TimerFps('Local optimization', is_verbose = self.timer_verbose)        
        self.time_large_opt = TimerFps('Large window optimization', is_verbose = self.timer_verbose)    
        
        self.queue = Queue()
        self.work_thread = Thread(target=self.run)
        self.stop = False
        
        self.lock_accept_keyframe = RLock()
        self._is_idle = True 
        self.idle_codition = Condition()
        
        self.opt_abort_flag = g2o.Flag(False)  
         
        self.log_file = None 
        self.thread_large_BA = None 
Пример #3
0
 def optimize(self,
              local_window=Parameters.kLargeBAWindow,
              verbose=False,
              rounds=10,
              use_robust_kernel=False,
              do_cull_points=False,
              abort_flag=g2o.Flag()):
     err = optimizer_g2o.bundle_adjustment(self.get_keyframes(),
                                           self.get_points(),
                                           local_window=local_window,
                                           verbose=verbose,
                                           rounds=rounds,
                                           use_robust_kernel=False,
                                           abort_flag=abort_flag)
     if do_cull_points:
         self.remove_points_with_big_reproj_err(self.get_points())
     return err
Пример #4
0
import sys
import numpy as np
import math

sys.path.append("../../")
from config import Config

import g2o

opt = g2o.SparseOptimizer()
block_solver = g2o.BlockSolverSE3(g2o.LinearSolverEigenSE3())
solver = g2o.OptimizationAlgorithmLevenberg(block_solver)
opt.set_algorithm(solver)

flag = g2o.Flag()
print('flag: ', flag.value)

opt.set_force_stop_flag(flag)
flag.value = False
print('opt flag: ', opt.force_stop_flag())
flag.value = True
print('opt flag: ', opt.force_stop_flag())
Пример #5
0
def bundle_adjustment(keyframes, points, local_window, fixed_points=False, verbose=False, rounds=10, use_robust_kernel=False, abort_flag=g2o.Flag()):
    if local_window is None:
        local_frames = keyframes
    else:
        local_frames = keyframes[-local_window:]

    # create g2o optimizer
    opt = g2o.SparseOptimizer()
    block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
    #block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCholmodSE3())        
    solver = g2o.OptimizationAlgorithmLevenberg(block_solver)
    opt.set_algorithm(solver)
    opt.set_force_stop_flag(abort_flag)

    thHuberMono = math.sqrt(5.991);  # chi-square 2 DOFS 

    graph_keyframes, graph_points = {}, {}

    # add frame vertices to graph
    for kf in (local_frames if fixed_points else keyframes):    # if points are fixed then consider just the local frames, otherwise we need all frames or at least two frames for each point
        if kf.is_bad:
            continue 
        #print('adding vertex frame ', f.id, ' to graph')
        se3 = g2o.SE3Quat(kf.Rcw, kf.tcw)
        v_se3 = g2o.VertexSE3Expmap()
        v_se3.set_estimate(se3)
        v_se3.set_id(kf.kid * 2)  # even ids  (use f.kid here!)
        v_se3.set_fixed(kf.kid==0 or kf not in local_frames) #(use f.kid here!)
        opt.add_vertex(v_se3)

        # confirm pose correctness
        #est = v_se3.estimate()
        #assert np.allclose(pose[0:3, 0:3], est.rotation().matrix())
        #assert np.allclose(pose[0:3, 3], est.translation())

        graph_keyframes[kf] = v_se3

    num_edges = 0
    
    # add point vertices to graph 
    for p in points:
        assert(p is not None)        
        if p.is_bad:  # do not consider bad points   
            continue
        if __debug__:        
            if not any([f in keyframes for f in p.keyframes()]):  
                Printer.red('point without a viewing frame!!')
                continue        
        #print('adding vertex point ', p.id,' to graph')
        v_p = g2o.VertexSBAPointXYZ()    
        v_p.set_id(p.id * 2 + 1)  # odd ids
        v_p.set_estimate(p.pt[0:3])
        v_p.set_marginalized(True)
        v_p.set_fixed(fixed_points)
        opt.add_vertex(v_p)
        graph_points[p] = v_p

        # add edges
        for kf, idx in p.observations():
            if kf.is_bad:
                continue 
            if kf not in graph_keyframes:
                continue
            #print('adding edge between point ', p.id,' and frame ', f.id)
            edge = g2o.EdgeSE3ProjectXYZ()
            edge.set_vertex(0, v_p)
            edge.set_vertex(1, graph_keyframes[kf])
            edge.set_measurement(kf.kpsu[idx])
            invSigma2 = Frame.feature_manager.inv_level_sigmas2[kf.octaves[idx]]
            edge.set_information(np.eye(2)*invSigma2)
            if use_robust_kernel:
                edge.set_robust_kernel(g2o.RobustKernelHuber(thHuberMono))

            edge.fx = kf.camera.fx 
            edge.fy = kf.camera.fy
            edge.cx = kf.camera.cx
            edge.cy = kf.camera.cy

            opt.add_edge(edge)
            num_edges += 1

    if verbose:
        opt.set_verbose(True)
    opt.initialize_optimization()
    opt.optimize(rounds)

    # put frames back
    for kf in graph_keyframes:
        est = graph_keyframes[kf].estimate()
        #R = est.rotation().matrix()
        #t = est.translation()
        #f.update_pose(poseRt(R, t))
        kf.update_pose(g2o.Isometry3d(est.orientation(), est.position()))

    # put points back
    if not fixed_points:
        for p in graph_points:
            p.update_position(np.array(graph_points[p].estimate()))
            p.update_normal_and_depth(force=True)
            
    mean_squared_error = opt.active_chi2()/max(num_edges,1)

    return mean_squared_error
Пример #6
0
def local_bundle_adjustment(keyframes, points, keyframes_ref=[], fixed_points=False, verbose=False, rounds=10, abort_flag=g2o.Flag(), map_lock=None):

    # create g2o optimizer
    opt = g2o.SparseOptimizer()
    block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
    #block_solver = g2o.BlockSolverSE3(g2o.LinearSolverEigenSE3())  
    #block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCholmodSE3())          
    solver = g2o.OptimizationAlgorithmLevenberg(block_solver)
    opt.set_algorithm(solver)
    opt.set_force_stop_flag(abort_flag)

    #robust_kernel = g2o.RobustKernelHuber(np.sqrt(5.991))  # chi-square 2 DOFs
    thHuberMono = math.sqrt(5.991);  # chi-square 2 DOFS 

    graph_keyframes, graph_points = {}, {}

    # add frame vertices to graph
    for kf in keyframes:    
        if kf.is_bad:
            continue 
        #print('adding vertex frame ', f.id, ' to graph')
        se3 = g2o.SE3Quat(kf.Rcw, kf.tcw)
        v_se3 = g2o.VertexSE3Expmap()
        v_se3.set_estimate(se3)
        v_se3.set_id(kf.kid * 2)  # even ids  (use f.kid here!)
        v_se3.set_fixed(kf.kid==0)  # (use f.kid here!)
        opt.add_vertex(v_se3)
        graph_keyframes[kf] = v_se3     
           
        # confirm pose correctness
        #est = v_se3.estimate()
        #assert np.allclose(pose[0:3, 0:3], est.rotation().matrix())
        #assert np.allclose(pose[0:3, 3], est.translation())
        
    # add reference frame vertices to graph
    for kf in keyframes_ref:    
        if kf.is_bad:
            continue 
        #print('adding vertex frame ', f.id, ' to graph')
        se3 = g2o.SE3Quat(kf.Rcw, kf.tcw)
        v_se3 = g2o.VertexSE3Expmap()
        v_se3.set_estimate(se3)
        v_se3.set_id(kf.kid * 2)  # even ids  (use f.kid here!)
        v_se3.set_fixed(True)
        opt.add_vertex(v_se3)
        graph_keyframes[kf] = v_se3             

    graph_edges = {}
    num_edges = 0
    num_bad_edges = 0

    # add point vertices to graph 
    for p in points:
        assert(p is not None)
        if p.is_bad:  # do not consider bad points             
            continue  
        if not any([f in keyframes for f in p.keyframes()]):  
            Printer.orange('point %d without a viewing keyframe in input keyframes!!' %(p.id))
            #Printer.orange('         keyframes: ',p.observations_string())
            continue
        #print('adding vertex point ', p.id,' to graph')
        v_p = g2o.VertexSBAPointXYZ()    
        v_p.set_id(p.id * 2 + 1)  # odd ids
        v_p.set_estimate(p.pt[0:3])
        v_p.set_marginalized(True)
        v_p.set_fixed(fixed_points)
        opt.add_vertex(v_p)
        graph_points[p] = v_p

        # add edges
        for kf, p_idx in p.observations():
            if kf.is_bad:
                continue 
            if kf not in graph_keyframes:
                continue
            if __debug__:      
                p_f = kf.get_point_match(p_idx)
                if p_f != p:
                    print('frame: ', kf.id, ' missing point ', p.id, ' at index p_idx: ', p_idx)                    
                    if p_f is not None:
                        print('p_f:', p_f)
                    print('p:',p)
            assert(kf.get_point_match(p_idx) is p)            
            #print('adding edge between point ', p.id,' and frame ', f.id)
            edge = g2o.EdgeSE3ProjectXYZ()
            edge.set_vertex(0, v_p)
            edge.set_vertex(1, graph_keyframes[kf])
            edge.set_measurement(kf.kpsu[p_idx])
            invSigma2 = Frame.feature_manager.inv_level_sigmas2[kf.octaves[p_idx]]
            edge.set_information(np.eye(2)*invSigma2)
            edge.set_robust_kernel(g2o.RobustKernelHuber(thHuberMono))

            edge.fx = kf.camera.fx 
            edge.fy = kf.camera.fy
            edge.cx = kf.camera.cx
            edge.cy = kf.camera.cy

            opt.add_edge(edge)

            graph_edges[edge] = (p,kf,p_idx) # one has kf.points[p_idx] == p
            num_edges += 1            

    if verbose:
        opt.set_verbose(True)

    if abort_flag.value:
        return -1,0

    # initial optimization 
    opt.initialize_optimization()
    opt.optimize(5)
    
    if not abort_flag.value:
        chi2Mono = 5.991 # chi-square 2 DOFs

        # check inliers observation 
        for edge, edge_data in graph_edges.items(): 
            p = edge_data[0]
            if p.is_bad:
                continue 
            if edge.chi2() > chi2Mono or not edge.is_depth_positive():
                edge.set_level(1)
                num_bad_edges += 1
            edge.set_robust_kernel(None)

        # optimize again without outliers 
        opt.initialize_optimization()
        opt.optimize(rounds)

    # search for final outlier observations and clean map  
    num_bad_observations = 0  # final bad observations
    outliers_data = []
    for edge, edge_data in graph_edges.items(): 
        p, kf, p_idx = edge_data
        if p.is_bad:
            continue         
        assert(kf.get_point_match(p_idx) is p) 
        if edge.chi2() > chi2Mono or not edge.is_depth_positive():         
            num_bad_observations += 1
            outliers_data.append(edge_data)       

    if map_lock is None: 
        map_lock = RLock() # put a fake lock 
        
    with map_lock:      
        # remove outlier observations 
        for d in outliers_data:
            p, kf, p_idx = d
            p_f = kf.get_point_match(p_idx)
            if p_f is not None:
                assert(p_f is p)
                p.remove_observation(kf,p_idx)
                # the following instruction is now included in p.remove_observation()
                #f.remove_point(p)   # it removes multiple point instances (if these are present)   
                #f.remove_point_match(p_idx) # this does not remove multiple point instances, but now there cannot be multiple instances any more

        # put frames back
        for kf in graph_keyframes:
            est = graph_keyframes[kf].estimate()
            #R = est.rotation().matrix()
            #t = est.translation()
            #f.update_pose(poseRt(R, t))
            kf.update_pose(g2o.Isometry3d(est.orientation(), est.position()))

        # put points back
        if not fixed_points:
            for p in graph_points:
                p.update_position(np.array(graph_points[p].estimate()))
                p.update_normal_and_depth(force=True)

    active_edges = num_edges-num_bad_edges
    mean_squared_error = opt.active_chi2()/active_edges

    return mean_squared_error, num_bad_observations/max(num_edges,1)