Пример #1
0
def plot_histo_gram(f_name, rg):
    import matplotlib.pyplot as plt
    sfig = 420
    plt.figure()
    patterns, hist_record = zload(f_name)
    for hist, bins in hist_record:
        hist = hist[1:]
        bins = bins[1:]
        bins /= 3600
        width = 0.7 * (bins[1] - bins[0])
        plt.subplot(sfig)
        center = (bins[:-1] + bins[1:]) / 2
        plt.bar(center, hist, align='center', width=width)
        plt.xlim([r / 3600.0 for r in rg])

    plt.show()
Пример #2
0
def plot_histo_gram(f_name, rg):
    import matplotlib.pyplot as plt
    sfig = 420
    plt.figure()
    patterns, hist_record = zload(f_name)
    for hist, bins in hist_record:
        hist = hist[1:]
        bins = bins[1:]
        bins /= 3600
        width = 0.7*(bins[1]-bins[0])
        plt.subplot(sfig)
        center = (bins[:-1]+bins[1:])/2
        plt.bar(center, hist, align = 'center', width = width)
        plt.xlim([r/3600.0 for r in rg])

    plt.show()
Пример #3
0
        ls = linestyles[i % len(linestyles)]
        plt.plot(x, mat[:, i], linestyle=ls, marker=style,
                color=color, markersize=4)



if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Probability Law Identification")
    parser.add_argument('sscheck', help='self check file')
    parser.add_argument('lamb', type=float, help='up bound for the threshold')
    parser.add_argument('entro', help="['mf', 'mb'] entropy type")
    parser.add_argument('pic_name', default=None, help="output picture name")

    args = parser.parse_args()

    data = zload(args.sscheck)
    # import ipdb;ipdb.set_trace()

    I_rec = data['I_rec']
    n = I_rec[0].shape[0] # no. of PLs
    m = len(I_rec) # no. of windows
    seq_map = {
            'mf':0,
            'mb':1
            }
    # Convert I_rec to the weight of bipartie graph
    D = np.zeros((m, n))
    for j in xrange(n):
        for i in xrange(m):
            D[i, j] = I_rec[i][j, seq_map[args.entro]]