model = None if model_str == 'gcn_ae': model = GCNModelAE(placeholders, 300, 0) elif model_str == 'gcn_vae': model = GCNModelVAE(placeholders, num_features, num_nodes, features_nonzero) # Optimizer with tf.name_scope('optimizer'): if model_str == 'gcn_ae': labels_placeholders = placeholders['adj_orig_values'] , placeholders['adj_orig_l2_splits'] , placeholders['adj_orig_l1_splits'] opt = OptimizerAE(preds=model.reconstructions,batch_size=batchsize, labels=labels_placeholders ,pos_weight=placeholders['pos_weight'], norm=placeholders['norm'] , roc=placeholders['ROC_Score'] , ap=placeholders['AP']) elif model_str == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig_values'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session sess = tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) #sess = tf.Session() #sess = tf_debug.LocalCLIDebugWrapperSession(sess) sess.run(tf.global_variables_initializer()) files = os.listdir("C:\\Users\\USER\\Documents\\Projects\\MastersEnv\\GraphAutoEncoder\\gae_batch_update\\myData")
# Create model model = None if model_str == 'gcn_ae': model = GCNModelAE(placeholders, num_features, features_nonzero) elif model_str == 'gcn_vae': model = GCNModelVAE(placeholders, num_features, num_nodes, features_nonzero) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): if model_str == 'gcn_ae': opt = OptimizerAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif model_str == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) def load_checkpoints(sess): saver = tf.train.Saver() checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
def gae(filename, output_dir): # Settings flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.') flags.DEFINE_integer('epochs', 200, 'Number of epochs to train.') flags.DEFINE_integer('hidden1', 32, 'Number of units in hidden layer 1.') flags.DEFINE_integer('hidden2', 16, 'Number of units in hidden layer 2.') flags.DEFINE_float('weight_decay', 0., 'Weight for L2 loss on embedding matrix.') flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).') flags.DEFINE_string('filename', 'email-Eu-core.mat', 'dataset') flags.DEFINE_string('model', 'gcn_vae', 'Model string.') flags.DEFINE_string('dataset', 'cora', 'Dataset string.') flags.DEFINE_integer('features', 0, 'Whether to use features (1) or not (0).') model_str = FLAGS.model # dataset_str = FLAGS.dataset # Load data # adj, features = load_data(dataset_str) adj, R, edges = load_network_data(filename) num_edges = np.sum(adj) length = adj.shape[0] A = np.array(adj, copy=True) adj = sp.csr_matrix(adj) # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix( (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() adj_train, train_edges = mask_test_edges(adj) adj = adj_train if FLAGS.features == 0: features = sp.identity(adj.shape[0]) # featureless # Some preprocessing adj_norm = preprocess_graph(adj) # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()) } num_nodes = adj.shape[0] features = sparse_to_tuple(features.tocoo()) num_features = features[2][1] features_nonzero = features[1].shape[0] # Create model model = None if model_str == 'gcn_ae': model = GCNModelAE(placeholders, num_features, features_nonzero) elif model_str == 'gcn_vae': model = GCNModelVAE(placeholders, num_features, num_nodes, features_nonzero) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float( (adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): if model_str == 'gcn_ae': opt = OptimizerAE(preds=model.reconstructions, labels=tf.reshape( tf.sparse_tensor_to_dense( placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif model_str == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape( tf.sparse_tensor_to_dense( placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session sess = tf.Session() sess.run(tf.global_variables_initializer()) adj_label = adj_train + sp.eye(adj_train.shape[0]) adj_label = sparse_to_tuple(adj_label) # Train model for epoch in range(FLAGS.epochs): t = time.time() # Construct feed dictionary feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders) feed_dict.update({placeholders['dropout']: FLAGS.dropout}) # Run single weight update outs = sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=feed_dict) # Compute average loss # avg_cost = outs[1] # avg_accuracy = outs[2] # # if (epoch + 1) % 10 == 0: # print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost), # "train_acc=", "{:.5f}".format(avg_accuracy), "time=", "{:.5f}".format(time.time() - t)) print("GAE Optimization Finished!") feed_dict.update({placeholders['dropout']: 0}) emb = sess.run(model.z_mean, feed_dict=feed_dict) def sigmoid(x): return 1 / (1 + np.exp(-x)) # Predict on test set of edges adj_rec = np.dot(emb, emb.T) adj_rec = np.array(adj_rec) # adj_rec = adj_rec[1:length, :][:, 1:length] DD = np.sort(adj_rec.flatten()) threshold = DD[int(-1 * num_edges)] network_C = np.array([[ 0 if adj_rec[i, j] < threshold else 1 for i in range(adj_rec.shape[0]) ] for j in range(adj_rec.shape[1])], dtype=np.int8) # np.save('../data/GAE_network.npy', network_C[1:length, :][:, 1:length]) os.chdir('../') np.save('{}/GAE_network.npy'.format(output_dir, filename), network_C[1:length, :][:, 1:length]) A_copy = adj_rec final_network = [A_copy] # orinal_network = [A] for i in range(1, 5): adjacent_matrix = tf.placeholder(tf.float32, shape=A_copy.shape) R_matrix = tf.placeholder(tf.float32, shape=R[i - 1, 0].shape) A_copy = sess.run(tf.matmul(tf.matmul(R_matrix, adjacent_matrix), tf.transpose(R_matrix)), feed_dict={ R_matrix: R[i - 1, 0].todense(), adjacent_matrix: A_copy }) final_network.append(np.array(A_copy)) # adjacent_matrix = tf.placeholder(tf.float32, shape=A.shape) # R_matrix = tf.placeholder(tf.float32, shape=R[i - 1, 0].shape) # A = sess.run(tf.matmul(tf.matmul(R_matrix, adjacent_matrix), tf.transpose(R_matrix)), # feed_dict={R_matrix: R[i - 1, 0].todense(), adjacent_matrix: A}) # orinal_network.append(A) # draw_graph(final_network, edges, output_dir) network_B = final_network[0] print('Generating graph by GAE algorithm.') DD = np.sort(network_B.flatten())[::-1] threshold = DD[edges[0, 0]] network_C = np.array([[ 0 if network_B[i, j] < threshold else 1 for i in range(network_B.shape[0]) ] for j in range(network_B.shape[1])]) _A_obs = network_C + network_C.T _A_obs[_A_obs > 1] = 1 _A_obs = np.array(_A_obs) print('Computing metrics for graph generated by GAE') c = compute_graph_statistics(_A_obs) with open('{}/gae_network_statistics.pickle'.format(output_dir), 'wb') as handle: pickle.dump(c, handle, protocol=pickle.HIGHEST_PROTOCOL) print(c)
def __init__(self, graph_edgelist, num_actions, dimension, learning_rate=0.01, epochs=300, hidden1=32, hidden2=16, dropout=0., model_str='gcn_vae', use_features=0): """Initialize ExactBasis.""" if graph_edgelist is None: raise ValueError('graph cannot be None') if dimension < 1: raise ValueError('dimension must be >= 1') self.__num_actions = BasisFunction._validate_num_actions(num_actions) self._dimension = dimension adj, features = self.read_graph(graph_edgelist) # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj) # adj = adj_train if use_features == 0: features = sp.identity(features.shape[0]) # featureless # Some preprocessing adj_norm = preprocess_graph(adj) # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()) } num_nodes = adj.shape[0] features = sparse_to_tuple(features.tocoo()) num_features = features[2][1] features_nonzero = features[1].shape[0] # Create model model = None if model_str == 'gcn_ae': model = GCNModelAE(placeholders, num_features, features_nonzero, hidden1, hidden2, dimension) elif model_str == 'gcn_vae': model = GCNModelVAE(placeholders, num_features, num_nodes, features_nonzero, hidden1, dimension) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): if model_str == 'gcn_ae': opt = OptimizerAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm, learning_rate=learning_rate) elif model_str == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm, learning_rate=learning_rate) # Initialize session sess = tf.Session() sess.run(tf.global_variables_initializer()) adj_label = adj_train + sp.eye(adj_train.shape[0]) adj_label = sparse_to_tuple(adj_label) # Train model for epoch in range(epochs): t = time.time() # Construct feed dictionary feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders) feed_dict.update({placeholders['dropout']: dropout}) # Run single weight update outs = sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=feed_dict) print("GCN Optimization Finished!") feed_dict.update({placeholders['dropout']: 0}) self.embeddings = sess.run(model.z_mean, feed_dict=feed_dict)
def gcn_multilayer(self): """Neural embedding of a multilayer network""" all_nodes = self.get_all_nodes() tmp_fname = pjoin(self.out_dir, 'tmp.emb') for net_name, net in self.nets.items(): self.log.info('Run GCN For Net: %s' % net_name) # ============================================================= adjacency_matrix = nx.adjacency_matrix(net) adjacency_matrix = adjacency_matrix.todense() nodes_count = adjacency_matrix.shape[0] adj = adjacency_matrix features = sp.identity(nodes_count) adj = sp.csr_matrix(adj) # ----------------myCode----------------------------------- # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() # tst_actual_matrix = adj.toarray() adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj) adj = adj_train # -----------------------------myCode------------------------- # if FLAGS.features == 0: # features = sp.identity(features.shape[0]) # featureless # -----------------------------myCode------------------------- # Some pre processing adj_norm = preprocess_graph(adj) # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()) } num_nodes = adj.shape[0] features = sparse_to_tuple(features.tocoo()) num_features = features[2][1] features_nonzero = features[1].shape[0] # Create model model = None if self.model_str == 'gcn_ae': model = GCNModelAE(placeholders, num_features, features_nonzero, self.hidden1, self.hidden2) elif self.model_str == 'gcn_vae': model = GCNModelVAE(placeholders, num_features, num_nodes, features_nonzero, self.hidden1, self.hidden2) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): if self.model_str == 'gcn_ae': opt = OptimizerAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif self.model_str == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session sess = tf.Session() sess.run(tf.global_variables_initializer()) cost_val = [] acc_val = [] def get_roc_score(edges_pos, edges_neg, emb=None): if emb is None: feed_dict.update({placeholders['dropout']: 0}) emb = sess.run(model.z_mean, feed_dict=feed_dict) def sigmoid(x): return 1 / (1 + np.exp(-x)) # Predict on test set of edges adj_rec = np.dot(emb, emb.T) preds = [] pos = [] for e in edges_pos: preds.append(sigmoid(adj_rec[e[0], e[1]])) pos.append(adj_orig[e[0], e[1]]) preds_neg = [] neg = [] for e in edges_neg: preds_neg.append(sigmoid(adj_rec[e[0], e[1]])) neg.append(adj_orig[e[0], e[1]]) preds_all = np.hstack([preds, preds_neg]) labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))]) roc_score = roc_auc_score(labels_all, preds_all) ap_score = average_precision_score(labels_all, preds_all) return roc_score, ap_score cost_val = [] acc_val = [] val_roc_score = [] adj_label = adj_train + sp.eye(adj_train.shape[0]) adj_label = sparse_to_tuple(adj_label) # Train model # for epoch in range(FLAGS.epochs): # epochs = 10 dropout = 0 for epoch in range(self.n_iter): self.log.info('Iteration: %d' % epoch) t = time.time() # Construct feed dictionary feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders) # feed_dict.update({placeholders['dropout']: FLAGS.dropout}) # -----------myCode------------ feed_dict.update({placeholders['dropout']: dropout}) # -----------myCode------------ # Run single weight update outs = sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=feed_dict) # Compute average loss avg_cost = outs[1] avg_accuracy = outs[2] roc_curr, ap_curr = get_roc_score(val_edges, val_edges_false) val_roc_score.append(roc_curr) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost), "train_acc=", "{:.5f}".format(avg_accuracy), "val_roc=", "{:.5f}".format(val_roc_score[-1]), "val_ap=", "{:.5f}".format(ap_curr), "time=", "{:.5f}".format(time.time() - t)) print("Optimization Finished!") roc_score, ap_score = get_roc_score(test_edges, test_edges_false) print('Test ROC score: ' + str(roc_score)) print('Test AP score: ' + str(ap_score)) # ------vector generation ----------------------------- vectors = sess.run(model.embeddings, feed_dict=feed_dict) fname = self.out_dir + net_name +'vectors.txt' # with open(fname, 'a+') as fout: # for line in np.array(vectors): # fout.write(line + "\n") np.savetxt(fname, np.array(vectors), fmt="%s", delimiter=' ') self.log.info('Saving vectors: %s' % fname) # ============================================================== self.log.info('after exec gcn : %s' % net_name) self.log.info('Done!')
def run(self): if self.file_expr == '': # text-image-code combination n_by_n, x_train, y_train, train_mask, val_mask, test_mask, idx_supernodes, label_encoder = graph_generator.load_combo( self.labels_dict) else: n_by_n, x_train, y_train, train_mask, val_mask, test_mask, idx_supernodes, label_encoder = graph_generator.load_data( self.labels_dict, self.file_expr, min_valid_triples=self.min_valid_triples, sep=self.file_sep, select_rels=self.select_rels) self.idx_supernodes = idx_supernodes adj = nx.adjacency_matrix(nx.from_scipy_sparse_matrix( n_by_n)) #nx.adjacency_matrix(nx.from_numpy_array(n_by_n)) features = scipy.sparse.csr.csr_matrix(x_train) # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix( (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() self.adj_orig = adj_orig adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges2( adj) adj = adj_train # Some preprocessing adj_norm = preprocess_graph(adj) num_nodes = adj.shape[0] if not self.use_features: features = sp.identity(features.shape[0]) # featureless features = sparse_to_tuple(features.tocoo()) num_features = features[2][1] features_nonzero = features[1].shape[0] # Create model if model_str == 'gcn_ae': self.model = GCNModelAE(self.placeholders, num_features, features_nonzero) elif model_str == 'gcn_vae': self.model = GCNModelVAE(self.placeholders, num_features, num_nodes, features_nonzero) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float( (adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): if model_str == 'gcn_ae': opt = OptimizerAE(preds=self.model.reconstructions, labels=tf.reshape( tf.sparse_tensor_to_dense( self.placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif model_str == 'gcn_vae': opt = OptimizerVAE(preds=self.model.reconstructions, labels=tf.reshape( tf.sparse_tensor_to_dense( self.placeholders['adj_orig'], validate_indices=False), [-1]), model=self.model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) val_roc_score = [] adj_label = adj_train + sp.eye(adj_train.shape[0]) adj_label = sparse_to_tuple(adj_label) #import datetime #log_dir="logs/gae/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Train model for epoch in range(self.epochs): #FLAGS.epochs): t = time.time() # Construct feed dictionary self.feed_dict = construct_feed_dict(adj_norm, adj_label, features, self.placeholders) self.feed_dict.update( {self.placeholders['dropout']: self.dropout_rate}) # FLAGS.dropout}) # Run single weight update outs = self.sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=self.feed_dict) # Compute average loss avg_cost = outs[1] avg_accuracy = outs[2] roc_curr, ap_curr = self.get_roc_score(val_edges, val_edges_false) val_roc_score.append(roc_curr) # tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost), "train_acc=", "{:.5f}".format(avg_accuracy), "val_roc=", "{:.5f}".format(val_roc_score[-1]), "val_ap=", "{:.5f}".format(ap_curr), "time=", "{:.5f}".format(time.time() - t)) print("Optimization Finished!") roc_score, ap_score = self.get_roc_score(test_edges, test_edges_false) print('Test ROC score: ' + str(roc_score)) print('Test AP score: ' + str(ap_score)) [supernodes, supernodes_embeddings, supernodes_labels] = self.get_embeddings(y_train, label_encoder) self.supernodes = [ supernodes, supernodes_embeddings, supernodes_labels ]
def main(args): """ Compute embeddings using GAE/VGAE. """ # Load edgelist oneIndx = False E = np.loadtxt(args.inputgraph, delimiter=args.delimiter, dtype=int) if np.min(E) == 1: oneIndx = True E -= 1 # Create an unweighted graph G = nx.Graph() G.add_edges_from(E[:, :2]) # Get adj matrix of the graph tr_A = nx.adjacency_matrix(G, weight=None) num_nodes = tr_A.shape[0] # Set main diag to 1s and normalize (algorithm requirement) adj_norm = preprocess_graph(tr_A) # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()) } # Create empty feature matrix features = sp.identity(num_nodes) # featureless features = sparse_to_tuple(features.tocoo()) num_features = features[2][1] features_nonzero = features[1].shape[0] # Create model model = None if args.model == 'gcn_ae': model = GCNModelAE(placeholders, num_features, features_nonzero) elif args.model == 'gcn_vae': model = GCNModelVAE(placeholders, num_features, num_nodes, features_nonzero) pos_weight = float(tr_A.shape[0] * tr_A.shape[0] - tr_A.sum()) / tr_A.sum() norm = tr_A.shape[0] * tr_A.shape[0] / float( (tr_A.shape[0] * tr_A.shape[0] - tr_A.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): if args.model == 'gcn_ae': opt = OptimizerAE(preds=model.reconstructions, labels=tf.reshape( tf.sparse_tensor_to_dense( placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif args.model == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape( tf.sparse_tensor_to_dense( placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session sess = tf.Session() sess.run(tf.global_variables_initializer()) adj_label = tr_A + sp.eye(tr_A.shape[0]) adj_label = sparse_to_tuple(adj_label) # Train model for epoch in range(FLAGS.epochs): # Construct feed dictionary feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders) feed_dict.update({placeholders['dropout']: FLAGS.dropout}) # Run single weight update outs = sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=feed_dict) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(outs[1]), "train_acc=", "{:.5f}".format(outs[2])) # Compute predictions feed_dict.update({placeholders['dropout']: 0}) emb = sess.run(model.z_mean, feed_dict=feed_dict) def sigmoid(x): return 1 / (1 + np.exp(-x)) # Node similarities adj_rec = np.dot(emb, emb.T) start = time.time() # Read the train edges and compute similarity if args.tr_e is not None: train_edges = np.loadtxt(args.tr_e, delimiter=args.delimiter, dtype=int) if oneIndx: train_edges -= 1 scores = list() for src, dst in train_edges: scores.append(sigmoid(adj_rec[src, dst])) np.savetxt(args.tr_pred, scores, delimiter=args.delimiter) # Read the test edges and run predictions if args.te_e is not None: test_edges = np.loadtxt(args.te_e, delimiter=args.delimiter, dtype=int) if oneIndx: test_edges -= 1 scores = list() for src, dst in test_edges: scores.append(sigmoid(adj_rec[src, dst])) np.savetxt(args.te_pred, scores, delimiter=args.delimiter) # If no edge lists provided to predict links, then just store the embeddings else: np.savetxt(args.output, emb, delimiter=args.delimiter) print('Prediction time: {}'.format(time.time() - start))
def fit(self, adj, features, labels): adj_orig = adj adj_orig = adj_orig - sp.dia_matrix( (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() adj_train = gen_train_edges(adj) adj = adj_train # Some preprocessing adj_norm = preprocess_graph(adj) num_nodes = adj.shape[0] input_feature_dim = features.shape[1] features = normalize_vectors(features) # Define placeholders self.placeholders = { 'features': tf.compat.v1.placeholder(tf.float32, shape=(None, input_feature_dim)), # 'features': tf.compat.v1.sparse_placeholder(tf.float32), 'adj': tf.compat.v1.sparse_placeholder(tf.float32), 'adj_orig': tf.compat.v1.sparse_placeholder(tf.float32), 'dropout': tf.compat.v1.placeholder_with_default(0., shape=()) } if self.model_type == 'gcn_ae': self.model = GCNModelAE(self.placeholders, input_feature_dim) elif self.model_type == 'gcn_vae': self.model = GCNModelVAE(self.placeholders, input_feature_dim, num_nodes) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() # negative edges/pos edges # print('positive edge weight', pos_weight) norm = adj.shape[0] * adj.shape[0] / float( (adj.shape[0] * adj.shape[0] - adj.nnz) * 2) # Optimizer with tf.compat.v1.name_scope('optimizer'): if self.model_type == 'gcn_ae': opt = OptimizerAE(preds=self.model.reconstructions, labels=tf.reshape( tf.sparse.to_dense( self.placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif self.model_type == 'gcn_vae': opt = OptimizerVAE(preds=self.model.reconstructions, labels=tf.reshape( tf.sparse.to_dense( self.placeholders['adj_orig'], validate_indices=False), [-1]), model=self.model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session self.sess = tf.compat.v1.Session() self.sess.run(tf.compat.v1.global_variables_initializer()) adj_label = adj_train + sp.eye(adj_train.shape[0]) adj_label = sparse_to_tuple(adj_label) # Train model for epoch in range(FLAGS.epochs): t = time.time() # Construct feed dictionary self.feed_dict = construct_feed_dict(adj_norm, adj_label, features, self.placeholders) self.feed_dict.update( {self.placeholders['dropout']: FLAGS.dropout}) # Run single weight update outs = self.sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=self.feed_dict) # Compute average loss avg_cost = outs[1] avg_accuracy = outs[2]
num_features = features[2][1] features_nonzero = features[1].shape[0] # Create model # model = None GCN1 = GCNModelAE(placeholders, num_features, features_nonzero) GCN2 = GCNModelAE(placeholders, num_features, features_nonzero) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float( (adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Optimizer with tf.name_scope('optimizer'): opt1 = OptimizerAE(preds=GCN1.reconstructions, labels=placeholders['adj_gnd1'], pos_weight=pos_weight, norm=norm) opt2 = OptimizerAE(preds=GCN2.reconstructions, labels=placeholders['adj_gnd2'], pos_weight=pos_weight, norm=norm) # Initialize session sess = tf.Session() sess.run(tf.global_variables_initializer()) cost_val = [] acc_val = [] def get_roc_score(edges_pos, edges_neg, emb=None):