def testComplete2(self): # have a transformed 2.0 dataset, load it, and have gaia 2.1 transform # a point using the history. ds = DataSet() self.assertRaises(Exception, ds.load, testdata.GAIA_20_BACKWARDS_COMPAT_PCA_DATASET) return ds.load(testdata.GAIA_20_BACKWARDS_COMPAT_PCA_DATASET) ds21 = DataSet() ds21.load(testdata.TEST_DATABASE) p = ds21.point("17 Blue Monday ['88 12' Version].mp3") ds21 = ds.history().mapDataSet(ds21) self.assertEqual(ds.history().mapPoint(p), ds21.history().mapPoint(p)) ds = transform(ds, 'fixlength') ds21 = transform(ds21, 'fixlength') def search(ds, p): p = ds.history().mapPoint(p) dist = MetricFactory.create('euclidean', ds.layout()) return View(ds).nnSearch(p, dist).get(5) self.compareResults(search(ds, p), search(ds21, p))
def train_SVM(dataset, groundTruth, descriptorNames, exclude=[], svmtype='c-svc', kernel='rbf', c=1, gamma=1): # recreate a copy of the given dataset without history ds = DataSet() ds.addPoints([p for p in dataset.points()]) ds = transform(ds, 'normalize', { 'descriptorNames': descriptorNames, 'except': exclude, 'independent': True }) ds = transform( ds, 'svmtrain', { 'descriptorNames': descriptorNames, 'except': exclude, 'className': groundTruth.className, 'type': svmtype, 'kernel': kernel, 'c': c, 'gamma': gamma }) h = ds.history() return lambda p: str(h.mapPoint(p)[groundTruth.className])
def testHistory(self): ds = testdata.loadTestDB() ignored_descs = testdata.TEST_DATABASE_VARLENGTH_REAL testdata.resetSettings() ds_orig = testdata.loadTestDB() # cleaning, mandatory step ds = transform(ds, 'fixlength', {'except': ignored_descs}) cleaned_db = transform(ds, 'cleaner', {'except': ignored_descs}) # removing annoying descriptors, like mfcc.cov & mfcc.icov, who don't # like to be normalized like the other ones (constant value: dimension) no_mfcc_db = transform(cleaned_db, 'remove', {'descriptorNames': '*mfcc*'}) # normalize, to have everyone change values normalized_db = transform(no_mfcc_db, 'normalize', {'except': ignored_descs}) testPoints = [ '01 Oye Como Va - Santana.mp3', '02 Carmen Burana- O Fortuna.mp3', '07 Romeo and Juliet- the Knights\' Dance.mp3', '11 Lambada.mp3' ] for pointName in testPoints: p1 = normalized_db.point(pointName) p2 = normalized_db.history().mapPoint(ds_orig.point(pointName)) for name in p1.layout().descriptorNames(): self.assertEqual(p1[name], p2[name]) (tmpFile, tmpName) = tempfile.mkstemp() os.close(tmpFile) normalized_db.save(tmpName) reloaded_db = DataSet() reloaded_db.load(tmpName) for pointName in testPoints: p1 = normalized_db.point(pointName) p2 = normalized_db.history().mapPoint(ds_orig.point(pointName)) p3 = reloaded_db.point(pointName) p4 = reloaded_db.history().mapPoint(ds_orig.point(pointName)) self.assert_(p1.layout() == p2.layout()) self.assert_(p2.layout() == p3.layout()) self.assert_(p3.layout() == p4.layout()) for name in p1.layout().descriptorNames(): self.assertEqual(p1[name], p2[name]) self.assertEqual(p2[name], p3[name]) self.assertEqual(p3[name], p4[name]) # remove temp file os.remove(tmpName)
def train_SVM(dataset, groundTruth, descriptorNames, exclude = [], svmtype = 'c-svc', kernel = 'rbf', c = 1, gamma = 1): # recreate a copy of the given dataset without history ds = DataSet() ds.addPoints([ p for p in dataset.points() ]) ds = transform(ds, 'normalize', { 'descriptorNames': descriptorNames, 'except': exclude, 'independent': True }) ds = transform(ds, 'svmtrain', { 'descriptorNames': descriptorNames, 'except': exclude, 'className': groundTruth.className, 'type': svmtype, 'kernel': kernel, 'c': c, 'gamma': gamma}) h = ds.history() return lambda p: str(h.mapPoint(p)[groundTruth.className])
def harmonizeChunks(partfiles): # TODO: check all histories are the same, if not, try to do sth about it # find the GCLD (greatest common layout divisor :-) ) ds = DataSet() ds.load(partfiles[0]) origLayout = ds.layout().copy() gcld = ds.layout().copy() for pfile in partfiles[1:]: ds.load(pfile) gcld = gcld & ds.layout() # keep some stats about which descriptors got removed and the reason why before throwing # away the original history and simplifying it vldescs = set() nandescs = set() # now that we have our GCLD, transform all the chunks so they have the same layout (our GCLD) # and simplify their histories so that they also have the same history (the minimum history # required to arrive at this target layout). for pfile in partfiles: ds.load(pfile) for t in ds.history().toPython(): tname = t['Analyzer name'] descs = t['Applier parameters']['descriptorNames'] if tname == 'cleaner': nandescs.update(descs) elif tname == 'removevl': vldescs.update(descs) toremove = ds.layout().differenceWith(gcld) if toremove: ds = transform(ds, 'remove', {'descriptorNames': toremove}) ds.simplifyHistory() ds.save(pfile) # also get the other descriptors that got removed (because of a select or remove transfo) rdescs = set(origLayout.differenceWith(gcld)) - (vldescs | nandescs) return vldescs, nandescs, rdescs
def harmonizeChunks(partfiles): # TODO: check all histories are the same, if not, try to do sth about it # find the GCLD (greatest common layout divisor :-) ) ds = DataSet() ds.load(partfiles[0]) origLayout = ds.layout().copy() gcld = ds.layout().copy() for pfile in partfiles[1:]: ds.load(pfile) gcld = gcld & ds.layout() # keep some stats about which descriptors got removed and the reason why before throwing # away the original history and simplifying it vldescs = set() nandescs = set() # now that we have our GCLD, transform all the chunks so they have the same layout (our GCLD) # and simplify their histories so that they also have the same history (the minimum history # required to arrive at this target layout). for pfile in partfiles: ds.load(pfile) for t in ds.history().toPython(): tname = t['Analyzer name'] descs = t['Applier parameters']['descriptorNames'] if tname == 'cleaner': nandescs.update(descs) elif tname == 'removevl': vldescs.update(descs) toremove = ds.layout().differenceWith(gcld) if toremove: ds = transform(ds, 'remove', { 'descriptorNames': toremove }) ds.simplifyHistory() ds.save(pfile) # also get the other descriptors that got removed (because of a select or remove transfo) rdescs = set(origLayout.differenceWith(gcld)) - (vldescs | nandescs) return vldescs, nandescs, rdescs
class GaiaWrapper: def __init__(self, indexing_only_mode=False): self.indexing_only_mode = indexing_only_mode self.index_path = sim_settings.INDEX_DIR self.original_dataset = DataSet() self.pca_dataset = DataSet() if not self.indexing_only_mode: self.original_dataset_path = self.__get_dataset_path( sim_settings.INDEX_NAME) else: self.original_dataset_path = self.__get_dataset_path( sim_settings.INDEXING_SERVER_INDEX_NAME) self.descriptor_names = {} self.metrics = {} self.view = None self.view_pca = None self.transformations_history = None self.__load_dataset() def __get_dataset_path(self, ds_name): return os.path.join(sim_settings.INDEX_DIR, ds_name + '.db') def __load_dataset(self): """ Loads the dataset, does all the necessary steps to make it available for similarity queries and creates the PCA version of it. If dataset does not exist, creates a new empty one. NOTE: we assume that loaded datasets will have been prepared and normalized (see_ _prepare_original_dataset() and __normalize_original_dataset()) on due time (see add_point() method below), therefore this function does not prepare or normalize loaded datasets. """ if not os.path.exists(sim_settings.INDEX_DIR): os.makedirs(sim_settings.INDEX_DIR) # load original dataset if os.path.exists(self.original_dataset_path): self.original_dataset.load(self.original_dataset_path) self.__calculate_descriptor_names() if self.original_dataset.size( ) >= sim_settings.SIMILARITY_MINIMUM_POINTS and not self.indexing_only_mode: # Save transformation history so we do not need to compute it every time we need it self.transformations_history = self.original_dataset.history( ).toPython() # Build metrics for the different similarity presets, create a Gaia view self.__build_metrics() view = View(self.original_dataset) self.view = view # Compute PCA and create pca view and metric # NOTE: this step may take a long time if the dataset is big, but it only needs to be performed once # when the similarity server is loaded- self.pca_dataset = transform( self.original_dataset, 'pca', { 'descriptorNames': sim_settings.PCA_DESCRIPTORS, 'dimension': sim_settings.PCA_DIMENSIONS, 'resultName': 'pca' }) self.pca_dataset.setReferenceDataSet(self.original_dataset) self.view_pca = View(self.pca_dataset) self.__build_pca_metric() if self.original_dataset.history().size() <= 0: logger.info('Dataset loaded, size: %s points' % (self.original_dataset.size())) else: logger.info( 'Dataset loaded, size: %s points (%i fixed-length desc., %i variable-length desc.)' % (self.original_dataset.size(), len(self.descriptor_names['fixed-length']), len(self.descriptor_names['variable-length']))) else: # If there is no existing dataset we create an empty one. # For the moment we do not create any distance metric nor a view because search won't be possible until # the DB has a minimum of SIMILARITY_MINIMUM_POINTS self.original_dataset.save(self.original_dataset_path) self.__calculate_descriptor_names() logger.info('Created new dataset, size: %s points (should be 0)' % (self.original_dataset.size())) def __prepare_original_dataset(self): logger.info('Preparing the original dataset.') self.original_dataset = self.prepare_original_dataset_helper( self.original_dataset) self.__calculate_descriptor_names() def __normalize_original_dataset(self): logger.info('Normalizing the original dataset.') self.original_dataset = self.normalize_dataset_helper( self.original_dataset, self.descriptor_names['fixed-length']) def __calculate_descriptor_names(self): layout = self.original_dataset.layout() all_descriptor_names = layout.descriptorNames() fixed_length_descritpor_names = [] variable_length_descritpor_names = [] multidimensional_descriptor_names = [] for name in all_descriptor_names: region = layout.descriptorLocation(name) if region.lengthType() == VariableLength: variable_length_descritpor_names.append(name) else: fixed_length_descritpor_names.append(name) try: if region.dimension() > 1: multidimensional_descriptor_names.append(name) except: # TODO: exception too broad here... pass self.descriptor_names = { 'all': all_descriptor_names, 'fixed-length': fixed_length_descritpor_names, 'variable-length': variable_length_descritpor_names, 'multidimensional': multidimensional_descriptor_names } @staticmethod def prepare_original_dataset_helper(ds): ds = transform( ds, 'FixLength' ) # Needed to optimize use of fixed-length descriptors and save memory ds = transform( ds, 'Cleaner' ) # Remove descriptors that will cause problems in further transformations try: ds = transform(ds, 'enumerate', {'descriptorNames': ['.tonal.chords_progression']}) except: # TODO: exception too broad here... logger.info( 'WARNING: enumerate transformation to .tonal.chords_progression could not be performed.' ) return ds @staticmethod def normalize_dataset_helper(ds, descriptor_names): # NOTE: The "except" list of descriptors below should be reviewed if a new extractor is used. The point is to # remove descriptors can potentially break normalize transform (e.g. descriptors with value = 0) normalization_params = { "descriptorNames": descriptor_names, "except": [ "*.min", "*.max", "tonal.chords_histogram", ], "independent": True, "outliers": -1 } ds = transform(ds, 'normalize', normalization_params) return ds def __build_metrics(self): for preset in sim_settings.PRESETS: if preset != 'pca': # PCA metric is built only after pca dataset is created so it should not be built here logger.info('Bulding metric for preset %s' % preset) name = preset path = sim_settings.PRESET_DIR + name + ".yaml" preset_file = yaml.safe_load(open(path)) distance = preset_file['distance']['type'] parameters = preset_file['distance']['parameters'] search_metric = DistanceFunctionFactory.create( str(distance), self.original_dataset.layout(), parameters) self.metrics[name] = search_metric def __build_pca_metric(self): logger.info('Bulding metric for preset pca') preset_file = yaml.safe_load(open(sim_settings.PRESET_DIR + "pca.yaml")) distance = preset_file['distance']['type'] parameters = preset_file['distance']['parameters'] search_metric = DistanceFunctionFactory.create( str(distance), self.pca_dataset.layout(), parameters) self.metrics['pca'] = search_metric def add_point(self, point_location, point_name): if self.original_dataset.contains(str(point_name)): self.original_dataset.removePoint(str(point_name)) p = Point() if os.path.exists(str(point_location)): try: p.load(str(point_location)) p.setName(str(point_name)) if self.original_dataset.size( ) <= sim_settings.SIMILARITY_MINIMUM_POINTS: # Add point to original_dataset because PCA dataset has not been created yet self.original_dataset.addPoint(p) msg = 'Added point with name %s. Index has now %i points.' % \ (str(point_name), self.original_dataset.size()) logger.info(msg) else: # Add point to PCA dataset because it has been already created. # PCA dataset will take care of adding the point to the original dataset as well. self.pca_dataset.addPoint(p) msg = 'Added point with name %s. Index has now %i points (pca index has %i points).' % \ (str(point_name), self.original_dataset.size(), self.pca_dataset.size()) logger.info(msg) except Exception as e: msg = 'Point with name %s could NOT be added (%s).' % ( str(point_name), str(e)) logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.SERVER_ERROR_CODE } else: msg = 'Point with name %s could NOT be added because analysis file does not exist (%s).' % \ (str(point_name), str(point_location)) logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.SERVER_ERROR_CODE } if self.original_dataset.size( ) == sim_settings.SIMILARITY_MINIMUM_POINTS: # Do enumerate try: self.original_dataset = transform( self.original_dataset, 'enumerate', {'descriptorNames': ['.tonal.chords_progression']}) except: # TODO: exception too broad here... logger.info( 'WARNING: enumerate transformation to .tonal.chords_progression could not be performed.' ) # If when adding a new point we reach the minimum points for similarity, do the needful so that the dataset # can be used for search. This includes preparing the dataset, normalizing it, saveing it and creating view and # distance metrics. This will only happen once when the size of the dataset reaches SIMILARITY_MINIMUM_POINTS. if self.original_dataset.size( ) == sim_settings.SIMILARITY_MINIMUM_POINTS and not self.indexing_only_mode: self.__prepare_original_dataset() self.__normalize_original_dataset() self.transformations_history = self.original_dataset.history( ).toPython() self.save_index(msg="(reaching %i points)" % sim_settings.SIMILARITY_MINIMUM_POINTS) # TODO: the code below is repeated from __load_dataset() method, should be moved into a util function # Build metrics for the different similarity presets, create a Gaia view self.__build_metrics() view = View(self.original_dataset) self.view = view # Compute PCA and create pca view and metric # NOTE: this step may take a long time if the dataset is big, but it only needs to be performed once # when the similarity server is loaded- self.pca_dataset = transform( self.original_dataset, 'pca', { 'descriptorNames': sim_settings.PCA_DESCRIPTORS, 'dimension': sim_settings.PCA_DIMENSIONS, 'resultName': 'pca' }) self.pca_dataset.setReferenceDataSet(self.original_dataset) self.view_pca = View(self.pca_dataset) self.__build_pca_metric() return {'error': False, 'result': msg} def delete_point(self, point_name): if self.original_dataset.contains(str(point_name)): if self.original_dataset.size( ) <= sim_settings.SIMILARITY_MINIMUM_POINTS: # Remove from original dataset self.original_dataset.removePoint(str(point_name)) else: # Remove from pca dataset (pca dataset will take care of removing from original dataset too) self.pca_dataset.removePoint(str(point_name)) logger.info( 'Deleted point with name %s. Index has now %i points (pca index has %i points).' % (str(point_name), self.original_dataset.size(), self.pca_dataset.size())) return {'error': False, 'result': True} else: msg = 'Can\'t delete point with name %s because it does not exist.' % str( point_name) logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.NOT_FOUND_CODE } def get_point(self, point_name): logger.info('Getting point with name %s' % str(point_name)) if self.original_dataset.contains(str(point_name)): return self.original_dataset.point(str(point_name)) def get_all_point_names(self): point_names = sorted( [int(name) for name in self.original_dataset.pointNames()]) logger.info('Getting all point names (%i points)' % len(point_names)) return {'error': False, 'result': point_names} def save_index(self, filename=None, msg=""): tic = time.time() path = self.original_dataset_path if filename: path = sim_settings.INDEX_DIR + filename + ".db" logger.info('Saving index to (%s)...' % path + msg) self.original_dataset.save(path) toc = time.time() logger.info( 'Finished saving index (done in %.2f seconds, index has now %i points).' % ((toc - tic), self.original_dataset.size())) return {'error': False, 'result': path} def contains(self, point_name): logger.info('Checking if index has point with name %s' % str(point_name)) return { 'error': False, 'result': self.original_dataset.contains(point_name) } def get_sounds_descriptors(self, point_names, descriptor_names=None, normalization=True, only_leaf_descriptors=False): """ Returns a list with the descriptor values for all requested point names """ logger.info('Getting descriptors for points %s' % ','.join([str(name) for name in point_names])) # Add dot '.' at the beginning of descriptor names if not present if descriptor_names: descriptor_names_aux = list() for name in descriptor_names: if name[0] != '.': descriptor_names_aux.append('.' + name) else: descriptor_names_aux.append(name) descriptor_names = descriptor_names_aux[:] data = dict() required_descriptor_names = self.__calculate_complete_required_descriptor_names( descriptor_names, only_leaf_descriptors=only_leaf_descriptors) if type(required_descriptor_names) == dict: return required_descriptor_names # There has been an error for point_name in point_names: sound_descriptors = self.__get_point_descriptors( point_name, required_descriptor_names, normalization) if 'error' not in sound_descriptors: data[point_name] = sound_descriptors return {'error': False, 'result': data} def __calculate_complete_required_descriptor_names( self, descriptor_names, only_leaf_descriptors=False): if not descriptor_names: descriptor_names = self.descriptor_names['all'][:] try: structured_layout = generate_structured_dict_from_layout( self.descriptor_names['all'][:]) processed_descriptor_names = [] for name in descriptor_names: nested_descriptors = get_nested_dictionary_value( name.split('.')[1:], structured_layout) if not nested_descriptors: processed_descriptor_names.append(name) else: if only_leaf_descriptors: # only return descriptors if nested descriptors are statistics if len( set(nested_descriptors.keys()).intersection([ 'min', 'max', 'dvar2', 'dmean2', 'dmean', 'var', 'dvar', 'mean' ])) > 0: for extra_name in nested_descriptors.keys(): processed_descriptor_names.append( '%s.%s' % (name, extra_name)) else: # Return all nested descriptor names extra_names = [] get_nested_descriptor_names(nested_descriptors, extra_names) for extra_name in extra_names: processed_descriptor_names.append( '%s.%s' % (name, extra_name)) processed_descriptor_names = list(set(processed_descriptor_names)) return processed_descriptor_names except: return { 'error': True, 'result': 'Wrong descriptor names, unable to create layout.', 'status_code': sim_settings.BAD_REQUEST_CODE } def __get_point_descriptors(self, point_name, required_descriptor_names, normalization=True): """ Get normalization coefficients to transform the input data (get info from the last transformation which has been a normalization) """ normalization_coeffs = None if not normalization: trans_hist = self.transformations_history for i in range(0, len(trans_hist)): if trans_hist[-(i + 1)]['Analyzer name'] == 'normalize': normalization_coeffs = trans_hist[-( i + 1)]['Applier parameters']['coeffs'] required_layout = generate_structured_dict_from_layout( required_descriptor_names) try: p = self.original_dataset.point(str(point_name)) except: return { 'error': True, 'result': 'Sound does not exist in gaia index.', 'status_code': sim_settings.NOT_FOUND_CODE } for descriptor_name in required_descriptor_names: try: value = p.value(str(descriptor_name)) if normalization_coeffs: if descriptor_name in normalization_coeffs: a = normalization_coeffs[descriptor_name]['a'] b = normalization_coeffs[descriptor_name]['b'] if len(a) == 1: value = float(value - b[0]) / a[0] else: normalized_value = [] for i in range(0, len(a)): normalized_value.append( float(value[i] - b[i]) / a[i]) value = normalized_value except: try: value = p.label(str(descriptor_name)) except: value = None if descriptor_name[0] == '.': descriptor_name = descriptor_name[1:] set_nested_dictionary_value(descriptor_name.split('.'), required_layout, value) return required_layout # SIMILARITY SEARCH and CONTENT SEARCH def search_dataset(self, query_point, number_of_results, preset_name, offset=0): preset_name = str(preset_name) results = [] count = 0 size = self.original_dataset.size() if size < sim_settings.SIMILARITY_MINIMUM_POINTS: msg = 'Not enough datapoints in the dataset (%s < %s).' % ( size, sim_settings.SIMILARITY_MINIMUM_POINTS) logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.SERVER_ERROR_CODE } query_point = str(query_point) logger.info('NN search for point with name %s (preset = %s)' % (query_point, preset_name)) results = [] if not self.original_dataset.contains(query_point): msg = "Sound with id %s doesn't exist in the dataset." % query_point logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.NOT_FOUND_CODE } if preset_name == 'pca': # Search on PCA view search = self.view_pca.nnSearch(query_point, self.metrics[preset_name]) else: # Search on original dataset view search = self.view.nnSearch(query_point, self.metrics[preset_name]) results = search.get(int(number_of_results), offset=int(offset)) count = search.size() return {'error': False, 'result': {'results': results, 'count': count}} def api_search(self, target_type, target, filter, preset_name, metric_descriptor_names, num_results, offset, in_ids): # Check if index has sufficient points size = self.original_dataset.size() if size < sim_settings.SIMILARITY_MINIMUM_POINTS: msg = 'Not enough datapoints in the dataset (%s < %s).' % ( size, sim_settings.SIMILARITY_MINIMUM_POINTS) logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.SERVER_ERROR_CODE } # Get some dataset parameters that will be useful later trans_hist = self.transformations_history layout = self.original_dataset.layout() pca_layout = self.pca_dataset.layout() coeffs = None # Get normalization coefficients for i in range(0, len(trans_hist)): if trans_hist[-(i + 1)]['Analyzer name'] == 'normalize': coeffs = trans_hist[-(i + 1)]['Applier parameters']['coeffs'] # Process target if target: if target_type == 'sound_id': query_point = str(target) if not self.original_dataset.contains(query_point): msg = "Sound with id %s doesn't exist in the dataset and can not be set as similarity target." \ % query_point logger.info(msg) return { 'error': True, 'result': msg, 'status_code': sim_settings.NOT_FOUND_CODE } else: query = query_point elif target_type == 'descriptor_values': # Transform input params to the normalized feature space and add them to a query point # If there are no params specified in the target, the point is set as empty (probably random sounds # are returned) feature_names = [] query = Point() query.setLayout(layout) try: for param in target.keys(): # Only add numerical parameters. Non numerical ones (like key) are only used as filters if param in coeffs.keys(): feature_names.append(str(param)) value = target[param] if coeffs: a = coeffs[param]['a'] b = coeffs[param]['b'] if len(a) == 1: norm_value = a[0] * value + b[0] else: norm_value = [] for i in range(0, len(a)): norm_value.append(a[i] * value[i] + b[i]) query.setValue(str(param), norm_value) else: query.setValue(str(param), value) except: return { 'error': True, 'result': 'Invalid target (descriptor values could not be correctly parsed)', 'status_code': sim_settings.BAD_REQUEST_CODE } # Overwrite metric with present descriptors in target metric = DistanceFunctionFactory.create( 'euclidean', layout, {'descriptorNames': feature_names}) elif target_type == 'file': # Target is specified as the attached file # Create a point with the data in 'descriptors_data' and search for it target_file_parsing_type = '-' try: # Try directly loading the file p, query = Point(), Point() p.loadFromString(yaml.dump(target)) if preset_name == 'pca': query = self.pca_dataset.history().mapPoint( p) # map point to pca dataset else: query = self.original_dataset.history().mapPoint( p) # map point to original dataset target_file_parsing_type = 'mapPoint' except Exception as e: logger.info( 'Unable to create gaia point from uploaded file (%s). ' 'Trying adding descriptors one by one.' % e) # If does not work load descriptors one by one try: query = Point() #query.setLayout(layout) feature_names = [] get_nested_descriptor_names(target, feature_names) feature_names = [ '.%s' % item for item in feature_names ] nonused_features = [] for param in feature_names: if param in coeffs.keys(): value = get_nested_dictionary_value( param[1:].split('.'), target) if coeffs: try: a = coeffs[param]['a'] b = coeffs[param]['b'] if len(a) == 1: norm_value = a[0] * value + b[0] else: norm_value = [] for i in range(0, len(a)): norm_value.append(a[i] * value[i] + b[i]) query.setValue(str(param[1:]), norm_value) except: nonused_features.append(param) else: query.setValue(str(param[1:]), value) else: nonused_features.append(param) if preset_name == 'pca': query = self.pca_dataset.history().mapPoint( query) # map point to pca dataset else: query = self.original_dataset.history().mapPoint( p) # map point to original dataset target_file_parsing_type = 'walkDict' except Exception as e: logger.info( 'Unable to create gaia point from uploaded file and adding descriptors one by ' 'one (%s)' % e) return { 'error': True, 'result': 'Unable to create gaia point from uploaded file. Probably the ' 'file does not have the required layout. Are you using the ' 'correct version of Essentia\'s Freesound extractor?', 'status_code': sim_settings.SERVER_ERROR_CODE } else: query = Point() # Empty target if preset_name == 'pca': query.setLayout(pca_layout) else: query.setLayout(layout) # Process filter if filter: filter = parse_filter_list(filter, coeffs) else: filter = "" # Empty filter # log log_message = 'Similarity search' if target: if target_type == 'sound_id': log_target = '%s (sound id)' % str(target) elif target_type == 'descriptor_values': log_target = '%s (descriptor values)' % str(target) elif target_type == 'file': log_target = 'uploaded file (%s)' % target_file_parsing_type log_message += ' with target: %s' % log_target if filter: log_message += ' with filter: %s' % str(filter) logger.info(log_message) # if in_ids is specified, edit the filter accordingly if in_ids: if not filter: filter = 'WHERE point.id IN ("' + '", "'.join(in_ids) + '")' else: filter += ' AND point.id IN ("' + '", "'.join(in_ids) + '")' # Set query metric metric = self.metrics[preset_name] if metric_descriptor_names: metric = DistanceFunctionFactory.create( 'euclidean', layout, {'descriptorNames': metric_descriptor_names}) # Do query! try: if target_type == 'descriptor_values' and target: search = self.view.nnSearch(query, metric, str(filter)) else: if preset_name == 'pca': search = self.view_pca.nnSearch(query, metric, str(filter)) else: search = self.view.nnSearch(query, metric, str(filter)) results = search.get(num_results, offset=offset) count = search.size() except Exception as e: return { 'error': True, 'result': 'Similarity server error', 'status_code': sim_settings.SERVER_ERROR_CODE } note = None if target_type == 'file': if target_file_parsing_type == 'walkDict': note = 'The layout of the given analysis file differed from what we expected. Similarity results ' \ 'might not be accurate. Was the file generated with the last version of Essentia\'s ' \ 'Freesound extractor?' return { 'error': False, 'result': { 'results': results, 'count': count, 'note': note } }
class GaiaWrapper: def __init__(self): self.index_path = INDEX_DIR self.original_dataset = DataSet() self.original_dataset_path = self.__get_dataset_path(INDEX_NAME) self.metrics = {} self.view = None self.__load_dataset() def __get_dataset_path(self, ds_name): return os.path.join(INDEX_DIR, ds_name + ".db") def __load_dataset(self): # Loads the dataset, applies transforms if needed and saves. If dataset does not exists, creates an empty one and saves. if not os.path.exists(INDEX_DIR): os.makedirs(INDEX_DIR) # load original dataset if os.path.exists(self.original_dataset_path): self.original_dataset.load(self.original_dataset_path) if self.original_dataset.size() >= SIMILARITY_MINIMUM_POINTS: # if we have loaded a dataset of the correct size but it is unprepared, prepare it if self.original_dataset.history().size() <= 0: self.__prepare_original_dataset() self.__normalize_original_dataset() self.original_dataset.save(self.original_dataset_path) # if we have loaded a dataset which has not been normalized, normalize it normalized = False for element in self.original_dataset.history().toPython(): if element["Analyzer name"] == "normalize": normalized = True break if not normalized: self.__normalize_original_dataset() self.original_dataset.save(self.original_dataset_path) # build metrics for the different similarity presets self.__build_metrics() # create view view = View(self.original_dataset) self.view = view logger.debug("Dataset loaded, size: %s points" % (self.original_dataset.size())) else: # If there is no existing dataset we create an empty one. # For the moment we do not create any distance metric nor a view because search won't be possible until the DB has a minimum of SIMILARITY_MINIMUM_POINTS self.original_dataset.save(self.original_dataset_path) logger.debug("Created new dataset, size: %s points (should be 0)" % (self.original_dataset.size())) def __prepare_original_dataset(self): logger.debug("Preparing the original dataset.") self.original_dataset = self.prepare_original_dataset_helper(self.original_dataset) def __normalize_original_dataset(self): logger.debug("Normalizing the original dataset.") self.original_dataset = self.normalize_dataset_helper(self.original_dataset) @staticmethod def prepare_original_dataset_helper(ds): proc_ds1 = transform(ds, "RemoveVL") proc_ds2 = transform(proc_ds1, "FixLength") proc_ds1 = None prepared_ds = transform(proc_ds2, "Cleaner") proc_ds2 = None return prepared_ds @staticmethod def normalize_dataset_helper(ds): # Remove ['.lowlevel.mfcc.cov','.lowlevel.mfcc.icov'] (they give errors when normalizing) ds = transform(ds, "remove", {"descriptorNames": [".lowlevel.mfcc.cov", ".lowlevel.mfcc.icov"]}) # Add normalization normalization_params = {"descriptorNames": "*", "independent": True, "outliers": -1} normalized_ds = transform(ds, "normalize", normalization_params) ds = None return normalized_ds def __build_metrics(self): for preset in PRESETS: logger.debug("Bulding metric for preset %s" % preset) name = preset path = PRESET_DIR + name + ".yaml" preset_file = yaml.load(open(path)) distance = preset_file["distance"]["type"] parameters = preset_file["distance"]["parameters"] search_metric = DistanceFunctionFactory.create(str(distance), self.original_dataset.layout(), parameters) self.metrics[name] = search_metric def add_point(self, point_location, point_name): if self.original_dataset.contains(str(point_name)): self.original_dataset.removePoint(str(point_name)) try: p = Point() p.load(str(point_location)) p.setName(str(point_name)) self.original_dataset.addPoint(p) size = self.original_dataset.size() logger.debug("Added point with name %s. Index has now %i points." % (str(point_name), size)) except: msg = "Point with name %s could NOT be added. Index has now %i points." % (str(point_name), size) logger.debug(msg) return {"error": True, "result": msg} # If when adding a new point we reach the minimum points for similarity, prepare the dataset, save and create view and distance metrics # This will most never happen, only the first time we start similarity server, there is no index created and we add 2000 points. if size == SIMILARITY_MINIMUM_POINTS: self.__prepare_original_dataset() self.__normalize_original_dataset() self.save_index(msg="(reaching 2000 points)") # build metrics for the different similarity presets self.__build_metrics() # create view view = View(self.original_dataset) self.view = view return {"error": False, "result": True} def delete_point(self, point_name): if self.original_dataset.contains(str(point_name)): self.original_dataset.removePoint(str(point_name)) logger.debug( "Deleted point with name %s. Index has now %i points." % (str(point_name), self.original_dataset.size()) ) return {"error": False, "result": True} else: msg = "Can't delete point with name %s because it does not exist." % str(point_name) logger.debug(msg) return {"error": True, "result": msg} def get_point(self, point_name): logger.debug("Getting point with name %s" % str(point_name)) if self.original_dataset.contains(str(point_name)): return self.original_dataset.point(str(point_name)) def save_index(self, filename=None, msg=""): tic = time.time() path = self.original_dataset_path if filename: path = INDEX_DIR + filename + ".db" logger.debug("Saving index to (%s)..." % path + msg) self.original_dataset.save(path) toc = time.time() logger.debug( "Finished saving index (done in %.2f seconds, index has now %i points)." % ((toc - tic), self.original_dataset.size()) ) return {"error": False, "result": path} def contains(self, point_name): logger.debug("Checking if index has point with name %s" % str(point_name)) return {"error": False, "result": self.original_dataset.contains(point_name)} # SIMILARITY SEARCH (WEB and API) def search_dataset(self, query_point, number_of_results, preset_name): preset_name = str(preset_name) query_point = str(query_point) logger.debug("NN search for point with name %s (preset = %s)" % (query_point, preset_name)) size = self.original_dataset.size() if size < SIMILARITY_MINIMUM_POINTS: msg = "Not enough datapoints in the dataset (%s < %s)." % (size, SIMILARITY_MINIMUM_POINTS) logger.debug(msg) return {"error": True, "result": msg} # raise Exception('Not enough datapoints in the dataset (%s < %s).' % (size, SIMILARITY_MINIMUM_POINTS)) if query_point.endswith(".yaml"): # The point doesn't exist in the dataset.... # So, make a temporary point, add all the transformations # to it and search for it p, p1 = Point(), Point() p.load(query_point) p1 = self.original_dataset.history().mapPoint(p) similar_sounds = self.view.nnSearch(p1, self.metrics[preset_name]).get(int(number_of_results)) else: if not self.original_dataset.contains(query_point): msg = "Sound with id %s doesn't exist in the dataset." % query_point logger.debug(msg) return {"error": True, "result": msg} # raise Exception("Sound with id %s doesn't exist in the dataset." % query_point) similar_sounds = self.view.nnSearch(query_point, self.metrics[preset_name]).get(int(number_of_results)) return {"error": False, "result": similar_sounds} # CONTENT-BASED SEARCH (API) def query_dataset(self, query_parameters, number_of_results): size = self.original_dataset.size() if size < SIMILARITY_MINIMUM_POINTS: msg = "Not enough datapoints in the dataset (%s < %s)." % (size, SIMILARITY_MINIMUM_POINTS) logger.debug(msg) return {"error": True, "result": msg} # raise Exception('Not enough datapoints in the dataset (%s < %s).' % (size, SIMILARITY_MINIMUM_POINTS)) trans_hist = self.original_dataset.history().toPython() layout = self.original_dataset.layout() # Get normalization coefficients to transform the input data (get info from the last transformation which has been a normalization) coeffs = None for i in range(0, len(trans_hist)): if trans_hist[-(i + 1)]["Analyzer name"] == "normalize": coeffs = trans_hist[-(i + 1)]["Applier parameters"]["coeffs"] ############## # PARSE TARGET ############## # Transform input params to the normalized feature space and add them to a query point # If there are no params specified in the target, the point is set as empty (probably random sounds are returned) q = Point() q.setLayout(layout) feature_names = [] # If some target has been specified... if query_parameters["target"].keys(): for param in query_parameters["target"].keys(): # Only add numerical parameters. Non numerical ones (like key) are only used as filters if param in coeffs.keys(): feature_names.append(str(param)) value = query_parameters["target"][param] if coeffs: a = coeffs[param]["a"] b = coeffs[param]["b"] if len(a) == 1: norm_value = a[0] * value + b[0] else: norm_value = [] for i in range(0, len(a)): norm_value.append(a[i] * value[i] + b[i]) # text = str(type(param)) + " " + str(type(norm_value)) q.setValue(str(param), norm_value) else: q.setValue(str(param), value) ############## # PARSE FILTER ############## filter = "" # If some filter has been specified... if query_parameters["filter"]: if type(query_parameters["filter"][0:5]) == str: filter = query_parameters["filter"] else: filter = self.parse_filter_list(query_parameters["filter"], coeffs) ############# # DO QUERY!!! ############# logger.debug( "Content based search with target: " + str(query_parameters["target"]) + " and filter: " + str(filter) ) metric = DistanceFunctionFactory.create("euclidean", layout, {"descriptorNames": feature_names}) # Looks like that depending on the version of gaia, variable filter must go after or before the metric # For the gaia version we have currently (sep 2012) in freesound: nnSearch(query,filter,metric) # results = self.view.nnSearch(q,str(filter),metric).get(int(number_of_results)) # <- Freesound results = self.view.nnSearch(q, metric, str(filter)).get(int(number_of_results)) return {"error": False, "result": results} # UTILS for content-based search def prepend_value_label(self, f): if f["type"] == "NUMBER" or f["type"] == "RANGE" or f["type"] == "ARRAY": return "value" else: return "label" def parse_filter_list(self, filter_list, coeffs): # TODO: eliminate this? # coeffs = None filter = "WHERE" for f in filter_list: if type(f) != dict: filter += f else: if f["type"] == "NUMBER" or f["type"] == "STRING" or f["type"] == "ARRAY": if f["type"] == "NUMBER": if coeffs: norm_value = coeffs[f["feature"]]["a"][0] * f["value"] + coeffs[f["feature"]]["b"][0] else: norm_value = f["value"] elif f["type"] == "ARRAY": if coeffs: norm_value = [] for i in range(len(f["value"])): norm_value.append( coeffs[f["feature"]]["a"][i] * f["value"][i] + coeffs[f["feature"]]["b"][i] ) else: norm_value = f["value"] else: norm_value = f["value"] filter += " " + self.prepend_value_label(f) + f["feature"] + "=" + str(norm_value) + " " else: filter += " " if f["value"]["min"]: if coeffs: norm_value = coeffs[f["feature"]]["a"][0] * f["value"]["min"] + coeffs[f["feature"]]["b"][0] else: norm_value = f["value"]["min"] filter += self.prepend_value_label(f) + f["feature"] + ">" + str(norm_value) + " " if f["value"]["max"]: if f["value"]["min"]: filter += "AND " if coeffs: norm_value = coeffs[f["feature"]]["a"][0] * f["value"]["max"] + coeffs[f["feature"]]["b"][0] else: norm_value = f["value"]["max"] filter += self.prepend_value_label(f) + f["feature"] + "<" + str(norm_value) + " " return filter