def main(inputs, infile_estimator, outfile_eval, infile1=None, infile2=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : strgit File path to trained estimator input outfile_eval : str File path to save the evalulation results, tabular infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values """ warnings.filterwarnings('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) X_test, y_test = _get_X_y(params, infile1, infile2) # load model estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) # handle scorer, convert to scorer dict scoring = params['scoring'] scorer = get_scoring(scoring) if not isinstance(scorer, (dict, list)): scorer = [scoring['primary_scoring']] scorer = _check_multimetric_scoring(estimator, scoring=scorer) if hasattr(estimator, 'evaluate'): scores = estimator.evaluate(X_test, y_test=y_test, scorer=scorer) else: scores = _score(estimator, X_test, y_test, scorer) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_eval, sep='\t', header=True, index=False)
def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, outfile_y_true=None, outfile_y_preds=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save deep learning model weights outfile_y_true : str, optional File path to target values for prediction outfile_y_preds : str, optional File path to save deep learning model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # load estimator with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) estimator = clean_params(estimator) # swap hyperparameter swapping = params['experiment_schemes']['hyperparams_swapping'] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options']['column_selector_options_1'] ['selected_column_selector_option']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) # fasta_file input elif input_type == 'seq_fasta': pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith('fasta_path'): estimator.set_params(**{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!") elif input_type == 'refseq_and_interval': path_params = { 'data_batch_generator__ref_genome_path': ref_seq, 'data_batch_generator__intervals_path': intervals, 'data_batch_generator__target_path': targets } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = 'infer' if params['input_options']['header2'] else None column_option = (params['input_options']['column_selector_options_2'] ['selected_column_selector_option2']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = params['input_options']['column_selector_options_2']['col2'] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns(infile2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == 'refseq_and_interval': estimator.set_params(data_batch_generator__features=y.ravel().tolist()) y = None # end y # load groups if groups: groups_selector = (params['experiment_schemes']['test_split'] ['split_algos']).pop('groups_selector') header = 'infer' if groups_selector['header_g'] else None column_option = \ (groups_selector['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = groups_selector['column_selector_options_g']['col_g'] else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() # del loaded_df del loaded_df # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == 'IRAPSClassifier': main_est.set_params(memory=memory) # handle scorer, convert to scorer dict scoring = params['experiment_schemes']['metrics']['scoring'] scorer = get_scoring(scoring) scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) # handle test (first) split test_split_options = ( params['experiment_schemes']['test_split']['split_algos']) if test_split_options['shuffle'] == 'group': test_split_options['labels'] = groups if test_split_options['shuffle'] == 'stratified': if y is not None: test_split_options['labels'] = y else: raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") X_train, X_test, y_train, y_test, groups_train, groups_test = \ train_test_split_none(X, y, groups, **test_split_options) exp_scheme = params['experiment_schemes']['selected_exp_scheme'] # handle validation (second) split if exp_scheme == 'train_val_test': val_split_options = ( params['experiment_schemes']['val_split']['split_algos']) if val_split_options['shuffle'] == 'group': val_split_options['labels'] = groups_train if val_split_options['shuffle'] == 'stratified': if y_train is not None: val_split_options['labels'] = y_train else: raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") X_train, X_val, y_train, y_val, groups_train, groups_val = \ train_test_split_none(X_train, y_train, groups_train, **val_split_options) # train and eval if hasattr(estimator, 'config') and hasattr(estimator, 'model_type'): if exp_scheme == 'train_val_test': estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) else: estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) else: estimator.fit(X_train, y_train) if isinstance(estimator, KerasGBatchClassifier): scores = {} steps = estimator.prediction_steps batch_size = estimator.batch_size data_generator = estimator.data_generator_ scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( estimator, data_generator, X_test, y=y_test, sk_scoring=sk_scoring, steps=steps, batch_size=batch_size, return_predictions=bool(outfile_y_true)) else: scores = {} if hasattr(estimator, 'model_') \ and hasattr(estimator.model_, 'metrics_names'): batch_size = estimator.batch_size score_results = estimator.model_.evaluate(X_test, y=y_test, batch_size=batch_size, verbose=0) metrics_names = estimator.model_.metrics_names if not isinstance(metrics_names, list): scores[metrics_names] = score_results else: scores = dict(zip(metrics_names, score_results)) if hasattr(estimator, 'predict_proba'): predictions = estimator.predict_proba(X_test) else: predictions = estimator.predict(X_test) y_true = y_test sk_scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) scores.update(sk_scores) # handle output if outfile_y_true: try: pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', index=False) pd.DataFrame(predictions).astype(np.float32).to_csv( outfile_y_preds, sep='\t', index=False, float_format='%g', chunksize=10000) except Exception as e: print("Error in saving predictions: %s" % e) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) if outfile_object: main_est = estimator if isinstance(estimator, Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ main_est.callbacks = [] if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ with open(outfile_object, 'wb') as output_handler: pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL)
def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') # store read dataframe object loaded_df = {} with open(inputs, 'r') as param_handler: params = json.load(param_handler) # Override the refit parameter params['search_schemes']['options']['refit'] = True \ if params['save'] != 'nope' else False with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) optimizer = params['search_schemes']['selected_search_scheme'] optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params['search_schemes']['options'] if groups: header = 'infer' if ( options['cv_selector']['groups_selector']['header_g']) else None column_option = ( options['cv_selector']['groups_selector'] ['column_selector_options_g']['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = (options['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups splitter, groups = get_cv(options.pop('cv_selector')) options['cv'] = splitter primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None params_builder = params['search_schemes']['search_params_builder'] param_grid = _eval_search_params(params_builder) estimator = clean_params(estimator) # save the SearchCV object without fit if params['save'] == 'save_no_fit': searcher = optimizer(estimator, param_grid, **options) print(searcher) with open(outfile_object, 'wb') as output_handler: pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == 'IRAPSClassifier': main_est.set_params(memory=memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params['outer_split'].pop('split_mode') if split_mode == 'nested_cv': # make sure refit is choosen # this could be True for sklearn models, but not the case for # deep learning models if not options['refit'] and \ not all(hasattr(estimator, attr) for attr in ('config', 'model_type')): warnings.warn("Refit is change to `True` for nested validation!") setattr(searcher, 'refit', True) outer_cv, _ = get_cv(params['outer_split']['cv_selector']) # nested CV, outer cv using cross_validate if options['error_score'] == 'raise': rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop('estimator', []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, 'cv_results_in_folds') try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = 'cv_results_' + '_' + 'split%d' % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, 'cv_results_', None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep='\t', header=True, index=False) except Exception as e: print(e) finally: del os keys = list(rval.keys()) for k in keys: if k.startswith('test'): rval['mean_' + k] = np.mean(rval[k]) rval['std_' + k] = np.std(rval[k]) if k.endswith('time'): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) return 0 # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options['error_score'] == 'raise': searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: warnings.warn("GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!") return # clean prams best_estimator_ = clean_params(best_estimator_) main_est = get_main_estimator(best_estimator_) if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ with open(outfile_object, 'wb') as output_handler: print("Best estimator is saved: %s " % repr(best_estimator_)) pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)
def main( inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, outfile_y_true=None, outfile_y_preds=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save deep learning model weights outfile_y_true : str, optional File path to target values for prediction outfile_y_preds : str, optional File path to save deep learning model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter("ignore") with open(inputs, "r") as param_handler: params = json.load(param_handler) # load estimator with open(infile_estimator, "rb") as estimator_handler: estimator = load_model(estimator_handler) estimator = clean_params(estimator) # swap hyperparameter swapping = params["experiment_schemes"]["hyperparams_swapping"] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params["input_options"]["selected_input"] # tabular input if input_type == "tabular": header = "infer" if params["input_options"]["header1"] else None column_option = params["input_options"]["column_selector_options_1"][ "selected_column_selector_option" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == "sparse": X = mmread(open(infile1, "r")) # fasta_file input elif input_type == "seq_fasta": pyfaidx = get_module("pyfaidx") sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith("fasta_path"): estimator.set_params(**{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!" ) elif input_type == "refseq_and_interval": path_params = { "data_batch_generator__ref_genome_path": ref_seq, "data_batch_generator__intervals_path": intervals, "data_batch_generator__target_path": targets, } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = "infer" if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"][ "selected_column_selector_option2" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == "refseq_and_interval": estimator.set_params(data_batch_generator__features=y.ravel().tolist()) y = None # end y # load groups if groups: groups_selector = ( params["experiment_schemes"]["test_split"]["split_algos"] ).pop("groups_selector") header = "infer" if groups_selector["header_g"] else None column_option = groups_selector["column_selector_options_g"][ "selected_column_selector_option_g" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = groups_selector["column_selector_options_g"]["col_g"] else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns( groups, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) groups = groups.ravel() # del loaded_df del loaded_df # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == "IRAPSClassifier": main_est.set_params(memory=memory) # handle scorer, convert to scorer dict scoring = params["experiment_schemes"]["metrics"]["scoring"] if scoring is not None: # get_scoring() expects secondary_scoring to be a comma separated string (not a list) # Check if secondary_scoring is specified secondary_scoring = scoring.get("secondary_scoring", None) if secondary_scoring is not None: # If secondary_scoring is specified, convert the list into comman separated string scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) scorer = get_scoring(scoring) scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) # handle test (first) split test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] if test_split_options["shuffle"] == "group": test_split_options["labels"] = groups if test_split_options["shuffle"] == "stratified": if y is not None: test_split_options["labels"] = y else: raise ValueError( "Stratified shuffle split is not " "applicable on empty target values!" ) ( X_train, X_test, y_train, y_test, groups_train, _groups_test, ) = train_test_split_none(X, y, groups, **test_split_options) exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] # handle validation (second) split if exp_scheme == "train_val_test": val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] if val_split_options["shuffle"] == "group": val_split_options["labels"] = groups_train if val_split_options["shuffle"] == "stratified": if y_train is not None: val_split_options["labels"] = y_train else: raise ValueError( "Stratified shuffle split is not " "applicable on empty target values!" ) ( X_train, X_val, y_train, y_val, groups_train, _groups_val, ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) # train and eval if hasattr(estimator, "validation_data"): if exp_scheme == "train_val_test": estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) else: estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) else: estimator.fit(X_train, y_train) if hasattr(estimator, "evaluate"): steps = estimator.prediction_steps batch_size = estimator.batch_size generator = estimator.data_generator_.flow( X_test, y=y_test, batch_size=batch_size ) predictions, y_true = _predict_generator( estimator.model_, generator, steps=steps ) scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) else: if hasattr(estimator, "predict_proba"): predictions = estimator.predict_proba(X_test) else: predictions = estimator.predict(X_test) y_true = y_test scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) if outfile_y_true: try: pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) pd.DataFrame(predictions).astype(np.float32).to_csv( outfile_y_preds, sep="\t", index=False, float_format="%g", chunksize=10000, ) except Exception as e: print("Error in saving predictions: %s" % e) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) memory.clear(warn=False) if outfile_object: main_est = estimator if isinstance(estimator, Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ if getattr(main_est, "validation_data", None): del main_est.validation_data if getattr(main_est, "data_generator_", None): del main_est.data_generator_ with open(outfile_object, "wb") as output_handler: pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL)
def main( inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter("ignore") # store read dataframe object loaded_df = {} with open(inputs, "r") as param_handler: params = json.load(param_handler) # Override the refit parameter params["search_schemes"]["options"]["refit"] = ( True if params["save"] != "nope" else False ) with open(infile_estimator, "rb") as estimator_handler: estimator = load_model(estimator_handler) optimizer = params["search_schemes"]["selected_search_scheme"] optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params["search_schemes"]["options"] if groups: header = ( "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None ) column_option = options["cv_selector"]["groups_selector"][ "column_selector_options_g" ]["selected_column_selector_option_g"] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ "col_g" ] else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns( groups, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) groups = groups.ravel() options["cv_selector"]["groups_selector"] = groups splitter, groups = get_cv(options.pop("cv_selector")) options["cv"] = splitter primary_scoring = options["scoring"]["primary_scoring"] # get_scoring() expects secondary_scoring to be a comma separated string (not a list) # Check if secondary_scoring is specified secondary_scoring = options["scoring"].get("secondary_scoring", None) if secondary_scoring is not None: # If secondary_scoring is specified, convert the list into comman separated string options["scoring"]["secondary_scoring"] = ",".join( options["scoring"]["secondary_scoring"] ) options["scoring"] = get_scoring(options["scoring"]) if options["error_score"]: options["error_score"] = "raise" else: options["error_score"] = np.nan if options["refit"] and isinstance(options["scoring"], dict): options["refit"] = primary_scoring if "pre_dispatch" in options and options["pre_dispatch"] == "": options["pre_dispatch"] = None params_builder = params["search_schemes"]["search_params_builder"] param_grid = _eval_search_params(params_builder) estimator = clean_params(estimator) # save the SearchCV object without fit if params["save"] == "save_no_fit": searcher = optimizer(estimator, param_grid, **options) print(searcher) with open(outfile_object, "wb") as output_handler: pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y( estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path, ) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == "IRAPSClassifier": main_est.set_params(memory=memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params["outer_split"].pop("split_mode") if split_mode == "nested_cv": # make sure refit is choosen # this could be True for sklearn models, but not the case for # deep learning models if not options["refit"] and not all( hasattr(estimator, attr) for attr in ("config", "model_type") ): warnings.warn("Refit is change to `True` for nested validation!") setattr(searcher, "refit", True) outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) # nested CV, outer cv using cross_validate if options["error_score"] == "raise": rval = cross_validate( searcher, X, y, scoring=options["scoring"], cv=outer_cv, n_jobs=N_JOBS, verbose=options["verbose"], return_estimator=(params["save"] == "save_estimator"), error_score=options["error_score"], return_train_score=True, ) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=options["scoring"], cv=outer_cv, n_jobs=N_JOBS, verbose=options["verbose"], return_estimator=(params["save"] == "save_estimator"), error_score=options["error_score"], return_train_score=True, ) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop("estimator", []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, "cv_results_in_folds") try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = "cv_results_" + "_" + "split%d" % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, "cv_results_", None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep="\t", header=True, index=False) except Exception as e: print(e) finally: del os keys = list(rval.keys()) for k in keys: if k.startswith("test"): rval["mean_" + k] = np.mean(rval[k]) rval["std_" + k] = np.std(rval[k]) if k.endswith("time"): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" return 0 # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options["error_score"] == "raise": searcher.fit(X, y, groups=groups) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv( path_or_buf=outfile_result, sep="\t", header=True, index=False ) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, "best_estimator_", None) if not best_estimator_: warnings.warn( "GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!" ) return # clean prams best_estimator_ = clean_params(best_estimator_) main_est = get_main_estimator(best_estimator_) if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, "data_generator_", None): del main_est.data_generator_ with open(outfile_object, "wb") as output_handler: print("Best estimator is saved: %s " % repr(best_estimator_)) pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)
def main( inputs, infile_estimator, outfile_predict, infile1=None, fasta_path=None, ref_seq=None, vcf_path=None ): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to trained estimator input outfile_predict : str File path to save the prediction results, tabular infile1 : str File path to dataset containing features fasta_path : str File path to dataset containing fasta file ref_seq : str File path to dataset containing the reference genome sequence. vcf_path : str File path to dataset containing variants info. """ warnings.filterwarnings('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # load model estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) # handle data input input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options'] ['column_selector_options_1'] ['selected_column_selector_option']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) X = read_columns(df, c=c, c_option=column_option).astype(float) if params['method'] == 'predict': preds = estimator.predict(X) else: preds = estimator.predict_proba(X) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) if params['method'] == 'predict': preds = estimator.predict(X) else: preds = estimator.predict_proba(X) # fasta input elif input_type == 'seq_fasta': if not hasattr(estimator, 'data_batch_generator'): raise ValueError( "To do prediction on sequences in fasta input, " "the estimator must be a `KerasGBatchClassifier`" "equipped with data_batch_generator!") pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] seq_length = estimator.data_batch_generator.seq_length batch_size = getattr(estimator, 'batch_size', 32) steps = (n_seqs + batch_size - 1) // batch_size seq_type = params['input_options']['seq_type'] klass = try_get_attr( 'galaxy_ml.preprocessors', seq_type) pred_data_generator = klass( fasta_path, seq_length=seq_length) if params['method'] == 'predict': preds = estimator.predict( X, data_generator=pred_data_generator, steps=steps) else: preds = estimator.predict_proba( X, data_generator=pred_data_generator, steps=steps) # vcf input elif input_type == 'variant_effect': klass = try_get_attr('galaxy_ml.preprocessors', 'GenomicVariantBatchGenerator') options = params['input_options'] options.pop('selected_input') if options['blacklist_regions'] == 'none': options['blacklist_regions'] = None pred_data_generator = klass( ref_genome_path=ref_seq, vcf_path=vcf_path, **options) pred_data_generator.set_processing_attrs() variants = pred_data_generator.variants # predict 1600 sample at once then write to file gen_flow = pred_data_generator.flow(batch_size=1600) file_writer = open(outfile_predict, 'w') header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) file_writer.write(header_row) header_done = False steps_done = 0 # TODO: multiple threading try: while steps_done < len(gen_flow): index_array = next(gen_flow.index_generator) batch_X = gen_flow._get_batches_of_transformed_samples( index_array) if params['method'] == 'predict': batch_preds = estimator.predict( batch_X, # The presence of `pred_data_generator` below is to # override model carrying data_generator if there # is any. data_generator=pred_data_generator) else: batch_preds = estimator.predict_proba( batch_X, # The presence of `pred_data_generator` below is to # override model carrying data_generator if there # is any. data_generator=pred_data_generator) if batch_preds.ndim == 1: batch_preds = batch_preds[:, np.newaxis] batch_meta = variants[index_array] batch_out = np.column_stack([batch_meta, batch_preds]) if not header_done: heads = np.arange(batch_preds.shape[-1]).astype(str) heads_str = '\t'.join(heads) file_writer.write("\t%s\n" % heads_str) header_done = True for row in batch_out: row_str = '\t'.join(row) file_writer.write("%s\n" % row_str) steps_done += 1 finally: file_writer.close() # TODO: make api `pred_data_generator.close()` pred_data_generator.close() return 0 # end input # output if len(preds.shape) == 1: rval = pd.DataFrame(preds, columns=['Predicted']) else: rval = pd.DataFrame(preds) rval.to_csv(outfile_predict, sep='\t', header=True, index=False)
def main(inputs, infile_estimator, infile_images, infile_dataframe, outfile_result, infile_weights=None, outfile_object=None, outfile_weights=None, outfile_y_true=None, outfile_y_preds=None, groups=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile_images : str File path to datasets containing images infile_dataframe : str File path to tabular dataset containing image information outfile_result : str File path to save the results, either cv_results or test result infile_weights : str File path to input model weights, used in evaluation and prediction mode. outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save deep learning model weights outfile_y_true : str, optional File path to target values for prediction outfile_y_preds : str, optional File path to save deep learning model weights groups : str File path to dataset containing groups labels """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # load estimator with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) estimator = clean_params(estimator) if not isinstance(estimator, KerasGBatchClassifier): raise ValueError( "Only `galaxy_ml.keras_galaxy_models.KerasGBatchClassifier` " "is supported!") # read DataFrame for images data_frame = pd.read_csv(infile_dataframe, sep='\t', header='infer') kwargs = _handle_image_generator_params(params['input_options'], data_frame) # build data generator image_generator = ImageDataFrameBatchGenerator(dataframe=data_frame, directory=IMAGES_DIR, **kwargs) estimator.set_params(data_batch_generator=image_generator) steps = estimator.prediction_steps batch_size = estimator.batch_size # Get X and y X = np.arange(data_frame.shape[0])[:, np.newaxis] if isinstance(kwargs['y_col'], list): y = None else: y = data_frame[kwargs['y_col']].ravel() # load groups if groups: groups_selector = (params['experiment_schemes']['test_split'] ['split_algos']).pop('groups_selector') header = 'infer' if groups_selector['header_g'] else None column_option = \ (groups_selector['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = groups_selector['column_selector_options_g']['col_g'] else: c = None if groups == infile_dataframe: groups = data_frame groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() exp_scheme = params['experiment_schemes']['selected_exp_scheme'] # Model Predictions if exp_scheme == 'model_predict': estimator.load_weights(infile_weights) steps = params['experiment_schemes']['pred_steps'] generator = image_generator.flow(X, y=None, batch_size=batch_size) predictions = estimator.model_.predict_generator(generator, steps=steps) try: pd.DataFrame(predictions).astype(np.float32).to_csv( outfile_result, sep='\t', index=False, float_format='%g', chunksize=10000) except Exception as e: print("Error in saving predictions: %s" % e) return 0 # Model Evaluation if exp_scheme == 'model_eval': estimator.load_weights(infile_weights) # compile model estimator.model_.compile(loss=estimator.loss, optimizer=estimator._optimizer, metrics=estimator.metrics) steps = params['experiment_schemes']['eval_steps'] sk_scoring = params['experiment_schemes']['metrics']['scoring'] scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( estimator, image_generator, X, sk_scoring=sk_scoring, steps=steps, batch_size=batch_size, return_predictions=bool(outfile_y_true)) # for other two modes, train/val and train/val/test else: # swap hyperparameter swapping = params['experiment_schemes']['hyperparams_swapping'] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) # handle test (first) split test_split_options = ( params['experiment_schemes']['test_split']['split_algos']) if test_split_options['shuffle'] == 'group': test_split_options['labels'] = groups if test_split_options['shuffle'] == 'stratified': if y is not None: test_split_options['labels'] = y else: raise ValueError("Stratified shuffle split is not " "applicable on empty target values or " "multiple output targets!") X_train, X_test, y_train, y_test, groups_train, groups_test = \ train_test_split_none(X, y, groups, **test_split_options) # handle validation (second) split if exp_scheme == 'train_val_test': val_split_options = ( params['experiment_schemes']['val_split']['split_algos']) if val_split_options['shuffle'] == 'group': val_split_options['labels'] = groups_train if val_split_options['shuffle'] == 'stratified': if y_train is not None: val_split_options['labels'] = y_train else: raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") X_train, X_val, y_train, y_val, groups_train, groups_val = \ train_test_split_none(X_train, y_train, groups_train, **val_split_options) # In image data generator, `y_val` must be None # labels will be retrived in generator. estimator.fit(X_train, y_train, validation_data=(X_val, )) else: estimator.fit(X_train, y_train, validation_data=(X_test, )) data_generator = estimator.data_generator_ sk_scoring = params['experiment_schemes']['metrics']['scoring'] steps = estimator.prediction_steps scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( estimator, data_generator, X_test, sk_scoring=sk_scoring, steps=steps, batch_size=batch_size, return_predictions=bool(outfile_y_true)) # handle output if outfile_y_true: try: pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', index=False) pd.DataFrame(predictions).astype(np.float32).to_csv( outfile_y_preds, sep='\t', index=False, float_format='%g', chunksize=10000) except Exception as e: print("Error in saving predictions: %s" % e) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) if outfile_object: main_est = get_main_estimator(estimator) if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ main_est.data_batch_generator.dataframe = None main_est.callbacks = [] if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ with open(outfile_object, 'wb') as output_handler: pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL)
def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter. infile_estimator : str File path to estimator. infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') # store read dataframe object loaded_df = {} with open(inputs, 'r') as param_handler: params = json.load(param_handler) # Override the refit parameter params['search_schemes']['options']['refit'] = True \ if (params['save'] != 'nope' or params['outer_split']['split_mode'] == 'nested_cv') else False estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) if estimator.__class__.__name__ == 'KerasGBatchClassifier': _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') setattr(_search, '_fit_and_score', _fit_and_score) setattr(_validation, '_fit_and_score', _fit_and_score) optimizer = params['search_schemes']['selected_search_scheme'] if optimizer == 'skopt.BayesSearchCV': optimizer = BayesSearchCV else: optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params['search_schemes']['options'] if groups: header = 'infer' if ( options['cv_selector']['groups_selector']['header_g']) else None column_option = ( options['cv_selector']['groups_selector'] ['column_selector_options_g']['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = (options['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups cv_selector = options.pop('cv_selector') if Version(galaxy_ml_version) < Version('0.8.3'): cv_selector.pop('n_stratification_bins', None) splitter, groups = get_cv(cv_selector) options['cv'] = splitter primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) # TODO make BayesSearchCV support multiple scoring if optimizer == 'skopt.BayesSearchCV' and \ isinstance(options['scoring'], dict): options['scoring'] = options['scoring'][primary_scoring] warnings.warn("BayesSearchCV doesn't support multiple " "scorings! Primary scoring is used.") if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None params_builder = params['search_schemes']['search_params_builder'] param_grid = _eval_search_params(params_builder) # save the SearchCV object without fit if params['save'] == 'save_no_fit': searcher = optimizer(estimator, param_grid, **options) dump_model_to_h5(searcher, outfile_object) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) estimator = _set_memory(estimator, memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params['outer_split'].pop('split_mode') # Nested CV if split_mode == 'nested_cv': cv_selector = params['outer_split']['cv_selector'] if Version(galaxy_ml_version) < Version('0.8.3'): cv_selector.pop('n_stratification_bins', None) outer_cv, _ = get_cv(cv_selector) # nested CV, outer cv using cross_validate if options['error_score'] == 'raise': rval = cross_validate( searcher, X, y, groups=groups, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], fit_params={'groups': groups}, return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, groups=groups, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], fit_params={'groups': groups}, return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop('estimator', []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, 'cv_results_in_folds') try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = 'cv_results_' + '_' + 'split%d' % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, 'cv_results_', None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep='\t', header=True, index=False) except Exception as e: print(e) finally: del os keys = list(rval.keys()) for k in keys: if k.startswith('test'): rval['mean_' + k] = np.mean(rval[k]) rval['std_' + k] = np.std(rval[k]) if k.endswith('time'): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) return 0 # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options['error_score'] == 'raise': searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: warnings.warn("GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!") return print("Saving best estimator: %s " % repr(best_estimator_)) dump_model_to_h5(best_estimator_, outfile_object)