Пример #1
0
 def Jz(self,*args,**kwargs):
     """
     NAME:
        Jz
     PURPOSE:
        evaluate the action jz
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        scipy.integrate.quadrature keywords
     OUTPUT:
        jz
     HISTORY:
        2012-07-30 - Written - Bovy (IAS@MPIA)
     """
     self._parse_eval_args(*args)
     Phi= _evaluatePotentials(self._pot,self._eval_R,self._eval_z)
     Phio= _evaluatePotentials(self._pot,self._eval_R,0.)
     Ez= Phi-Phio+self._eval_vz**2./2.
     #Bigger than Ezzmax?
     thisEzZmax= numpy.exp(self._EzZmaxsInterp(self._eval_R))
     if self._eval_R > self._Rmax or self._eval_R < self._Rmin or (Ez != 0. and numpy.log(Ez) > thisEzZmax): #Outside of the grid
         if _PRINTOUTSIDEGRID: #pragma: no cover
             print("Outside of grid in Ez")
         jz= self._aA(self._eval_R,0.,1.,#these two r dummies
                      0.,math.sqrt(2.*Ez),
                      _justjz=True,
                      **kwargs)[2]
     else:
         jz= (self._jzInterp(self._eval_R,Ez/thisEzZmax)\
             *(numpy.exp(self._jzEzmaxInterp(self._eval_R))-10.**-5.))[0][0]
     return jz
Пример #2
0
 def Jz(self,*args,**kwargs):
     """
     NAME:
        Jz
     PURPOSE:
        evaluate the action jz
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        scipy.integrate.quadrature keywords
     OUTPUT:
        jz
     HISTORY:
        2012-07-30 - Written - Bovy (IAS@MPIA)
     """
     self._parse_eval_args(*args)
     Phi= _evaluatePotentials(self._pot,self._eval_R,self._eval_z)
     Phio= _evaluatePotentials(self._pot,self._eval_R,0.)
     Ez= Phi-Phio+self._eval_vz**2./2.
     #Bigger than Ezzmax?
     thisEzZmax= numpy.exp(self._EzZmaxsInterp(self._eval_R))
     if self._eval_R > self._Rmax or self._eval_R < self._Rmin or (Ez != 0. and numpy.log(Ez) > thisEzZmax): #Outside of the grid
         if _PRINTOUTSIDEGRID: #pragma: no cover
             print("Outside of grid in Ez")
         jz= self._aA(self._eval_R,0.,1.,#these two r dummies
                      0.,math.sqrt(2.*Ez),
                      _justjz=True,
                      **kwargs)[2]
     else:
         jz= (self._jzInterp(self._eval_R,Ez/thisEzZmax)\
             *(numpy.exp(self._jzEzmaxInterp(self._eval_R))-10.**-5.))[0][0]
     return jz
Пример #3
0
def calcELStaeckel(R,vR,vT,z,vz,pot,vc=1.,ro=1.):
    """
    NAME:
       calcELStaeckel
    PURPOSE:
       calculate the energy and angular momentum
    INPUT:
       R - Galactocentric radius (/ro)
       vR - radial part of the velocity (/vc)
       vT - azimuthal part of the velocity (/vc)
       vc - circular velocity
       ro - reference radius
    OUTPUT:
       (E,L)
    HISTORY:
       2012-11-30 - Written - Bovy (IAS)
    """                           
    return (_evaluatePotentials(pot,R,z)+vR**2./2.+vT**2./2.+vz**2./2.,R*vT)
Пример #4
0
def potentialStaeckel(u,v,pot,delta):
    """
    NAME:
       potentialStaeckel
    PURPOSE:
       return the potential
    INPUT:
       u - confocal u
       v - confocal v
       pot - potential
       delta - focus
    OUTPUT:
       Phi(u,v)
    HISTORY:
       2012-11-29 - Written - Bovy (IAS)
    """
    R,z= bovy_coords.uv_to_Rz(u,v,delta=delta)
    return _evaluatePotentials(pot,R,z)
Пример #5
0
def potentialStaeckel(u, v, pot, delta):
    """
    NAME:
       potentialStaeckel
    PURPOSE:
       return the potential
    INPUT:
       u - confocal u
       v - confocal v
       pot - potential
       delta - focus
    OUTPUT:
       Phi(u,v)
    HISTORY:
       2012-11-29 - Written - Bovy (IAS)
    """
    R, z = bovy_coords.uv_to_Rz(u, v, delta=delta)
    return _evaluatePotentials(pot, R, z)
Пример #6
0
def calcELStaeckel(R,vR,vT,z,vz,pot,vc=1.,ro=1.):
    """
    NAME:
       calcELStaeckel
    PURPOSE:
       calculate the energy and angular momentum
    INPUT:
       R - Galactocentric radius (/ro)
       vR - radial part of the velocity (/vc)
       vT - azimuthal part of the velocity (/vc)
       vc - circular velocity
       ro - reference radius
    OUTPUT:
       (E,L)
    HISTORY:
       2012-11-30 - Written - Bovy (IAS)
    """                           
    return (_evaluatePotentials(pot,R,z)+vR**2./2.+vT**2./2.+vz**2./2.,R*vT)
Пример #7
0
 def _evaluate(self,*args,**kwargs):
     """
     NAME:
        _evaluate
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        scipy.integrate.quadrature keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2012-07-27 - Written - Bovy (IAS@MPIA)
     NOTE:
        For a Miyamoto-Nagai potential, this seems accurate to 0.1% and takes ~0.13 ms
        For a MWPotential, this takes ~ 0.17 ms
     """
     if len(args) == 5: #R,vR.vT, z, vz
         R,vR,vT, z, vz= args
     elif len(args) == 6: #R,vR.vT, z, vz, phi
         R,vR,vT, z, vz, phi= args
     else:
         self._parse_eval_args(*args)
         R= self._eval_R
         vR= self._eval_vR
         vT= self._eval_vT
         z= self._eval_z
         vz= self._eval_vz
     #First work on the vertical action
     Phi= _evaluatePotentials(self._pot,R,z)
     try:
         Phio= _evaluatePotentials(self._pot,R,numpy.zeros(len(R)))
     except TypeError:
         Phio= _evaluatePotentials(self._pot,R,0.)
     Ez= Phi-Phio+vz**2./2.
     #Bigger than Ezzmax?
     thisEzZmax= numpy.exp(self._EzZmaxsInterp(R))
     if isinstance(R,numpy.ndarray):
         indx= (R > self._Rmax)
         indx+= (R < self._Rmin)
         indx+= (Ez != 0.)*(numpy.log(Ez) > thisEzZmax)
         indxc= True^indx
         jz= numpy.empty(R.shape)
         if numpy.sum(indxc) > 0:
             jz[indxc]= (self._jzInterp.ev(R[indxc],Ez[indxc]/thisEzZmax[indxc])\
                             *(numpy.exp(self._jzEzmaxInterp(R[indxc]))-10.**-5.))
         if numpy.sum(indx) > 0:
             jz[indx]= self._aA(R[indx],
                                numpy.zeros(numpy.sum(indx)),
                                numpy.ones(numpy.sum(indx)),#these two r dummies
                                numpy.zeros(numpy.sum(indx)),
                                numpy.sqrt(2.*Ez[indx]),
                                _justjz=True,
                                **kwargs)[2]
     else:
         if R > self._Rmax or R < self._Rmin or (Ez != 0 and numpy.log(Ez) > thisEzZmax): #Outside of the grid
             if _PRINTOUTSIDEGRID: #pragma: no cover
                 print("Outside of grid in Ez", R > self._Rmax , R < self._Rmin , (Ez != 0 and numpy.log(Ez) > thisEzZmax))
             jz= self._aA(R,0.,1.,#these two r dummies
                          0.,math.sqrt(2.*Ez),
                          _justjz=True,
                          **kwargs)[2]
         else:
             jz= (self._jzInterp(R,Ez/thisEzZmax)\
                      *(numpy.exp(self._jzEzmaxInterp(R))-10.**-5.))[0][0]
     #Radial action
     ERLz= numpy.fabs(R*vT)+self._gamma*jz
     ER= Phio+vR**2./2.+ERLz**2./2./R**2.
     thisRL= self._RLInterp(ERLz)
     thisERRL= -numpy.exp(self._ERRLInterp(ERLz))+self._ERRLmax
     thisERRa= -numpy.exp(self._ERRaInterp(ERLz))+self._ERRamax
     if isinstance(R,numpy.ndarray):
         indx= ((ER-thisERRa)/(thisERRL-thisERRa) > 1.)\
             *(((ER-thisERRa)/(thisERRL-thisERRa)-1.) < 10.**-2.)
         ER[indx]= thisERRL[indx]
         indx= ((ER-thisERRa)/(thisERRL-thisERRa) < 0.)\
             *((ER-thisERRa)/(thisERRL-thisERRa) > -10.**-2.)
         ER[indx]= thisERRa[indx]
         indx= (ERLz < self._Lzmin)
         indx+= (ERLz > self._Lzmax)
         indx+= ((ER-thisERRa)/(thisERRL-thisERRa) > 1.)
         indx+= ((ER-thisERRa)/(thisERRL-thisERRa) < 0.)
         indxc= True^indx
         jr= numpy.empty(R.shape)
         if numpy.sum(indxc) > 0:
             jr[indxc]= (self._jrInterp.ev(ERLz[indxc],
                                           (ER[indxc]-thisERRa[indxc])/(thisERRL[indxc]-thisERRa[indxc]))\
                             *(numpy.exp(self._jrERRaInterp(ERLz[indxc]))-10.**-5.))
         if numpy.sum(indx) > 0:
             jr[indx]= self._aA(thisRL[indx],
                                numpy.sqrt(2.*(ER[indx]-_evaluatePotentials(self._pot,thisRL[indx],0.))-ERLz[indx]**2./thisRL[indx]**2.),
                                ERLz[indx]/thisRL[indx],
                                numpy.zeros(len(thisRL)),
                                numpy.zeros(len(thisRL)),
                                _justjr=True,
                                **kwargs)[0]                
     else:
         if (ER-thisERRa)/(thisERRL-thisERRa) > 1. \
                 and ((ER-thisERRa)/(thisERRL-thisERRa)-1.) < 10.**-2.:
             ER= thisERRL
         elif (ER-thisERRa)/(thisERRL-thisERRa) < 0. \
                 and (ER-thisERRa)/(thisERRL-thisERRa) > -10.**-2.:
             ER= thisERRa
         #Outside of grid?
         if ERLz < self._Lzmin or ERLz > self._Lzmax \
                 or (ER-thisERRa)/(thisERRL-thisERRa) > 1. \
                 or (ER-thisERRa)/(thisERRL-thisERRa) < 0.:
             if _PRINTOUTSIDEGRID: #pragma: no cover
                 print("Outside of grid in ER/Lz", ERLz < self._Lzmin , ERLz > self._Lzmax \
                     , (ER-thisERRa)/(thisERRL-thisERRa) > 1. \
                     , (ER-thisERRa)/(thisERRL-thisERRa) < 0., ER, thisERRL, thisERRa, (ER-thisERRa)/(thisERRL-thisERRa))
             jr= self._aA(thisRL[0],
                          numpy.sqrt(2.*(ER-_evaluatePotentials(self._pot,thisRL,0.))-ERLz**2./thisRL**2.)[0],
                          (ERLz/thisRL)[0],
                          0.,0.,
                          _justjr=True,
                          **kwargs)[0]
         else:
             jr= (self._jrInterp(ERLz,
                                 (ER-thisERRa)/(thisERRL-thisERRa))\
                      *(numpy.exp(self._jrERRaInterp(ERLz))-10.**-5.))[0][0]
     return (jr,R*vT,jz)
Пример #8
0
 def _evaluate(self, *args, **kwargs):
     """
     NAME:
        __call__ (_evaluate)
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz[,phi]:
              1) floats: phase-space value for single object (phi is optional) (each can be a Quantity)
              2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity)
           b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument 
        delta= (object-wide default) can be used to override the object-wide focal length; can also be an array with length N to allow different delta for different phase-space points
        u0= (None) if object-wide option useu0 is set, u0 to use (if useu0 and useu0 is None, a good value will be computed)
        c= (object-wide default, bool) True/False to override the object-wide setting for whether or not to use the C implementation
        order= (object-wide default, int) number of points to use in the Gauss-Legendre numerical integration of the relevant action integrals  
        When not using C:
           fixed_quad= (False) if True, use Gaussian quadrature (scipy.integrate.fixed_quad instead of scipy.integrate.quad)
           scipy.integrate.fixed_quad or .quad keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2012-11-27 - Written - Bovy (IAS)
        2017-12-27 - Allowed individual delta for each point - Bovy (UofT)
     """
     delta = kwargs.pop('delta', self._delta)
     order = kwargs.get('order', self._order)
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5:  #R,vR.vT, z, vz
             R, vR, vT, z, vz = args
         elif len(args) == 6:  #R,vR.vT, z, vz, phi
             R, vR, vT, z, vz, phi = args
         else:
             self._parse_eval_args(*args)
             R = self._eval_R
             vR = self._eval_vR
             vT = self._eval_vT
             z = self._eval_z
             vz = self._eval_vz
         if isinstance(R, float):
             R = nu.array([R])
             vR = nu.array([vR])
             vT = nu.array([vT])
             z = nu.array([z])
             vz = nu.array([vz])
         Lz = R * vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0 = nu.asarray(kwargs['u0'])
             else:
                 E = nu.array([
                     _evaluatePotentials(self._pot, R[ii], z[ii]) +
                     vR[ii]**2. / 2. + vz[ii]**2. / 2. + vT[ii]**2. / 2.
                     for ii in range(len(R))
                 ])
                 u0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(\
                     E,Lz,self._pot,delta)[0]
             kwargs.pop('u0', None)
         else:
             u0 = None
         jr, jz, err= actionAngleStaeckel_c.actionAngleStaeckel_c(\
             self._pot,delta,R,vR,vT,z,vz,u0=u0,order=order)
         if err == 0:
             return (jr, Lz, jz)
         else:  #pragma: no cover
             raise RuntimeError(
                 "C-code for calculation actions failed; try with c=False")
     else:
         if 'c' in kwargs and kwargs['c'] and not self._c:  #pragma: no cover
             warnings.warn(
                 "C module not used because potential does not have a C implementation",
                 galpyWarning)
         kwargs.pop('c', None)
         if (len(args) == 5 or len(args) == 6) \
                 and isinstance(args[0],nu.ndarray):
             ojr = nu.zeros((len(args[0])))
             olz = nu.zeros((len(args[0])))
             ojz = nu.zeros((len(args[0])))
             for ii in range(len(args[0])):
                 if len(args) == 5:
                     targs = (args[0][ii], args[1][ii], args[2][ii],
                              args[3][ii], args[4][ii])
                 elif len(args) == 6:
                     targs = (args[0][ii], args[1][ii], args[2][ii],
                              args[3][ii], args[4][ii], args[5][ii])
                 tkwargs = copy.copy(kwargs)
                 try:
                     tkwargs['delta'] = delta[ii]
                 except TypeError:
                     tkwargs['delta'] = delta
                 tjr, tlz, tjz = self(*targs, **tkwargs)
                 ojr[ii] = tjr
                 ojz[ii] = tjz
                 olz[ii] = tlz
             return (ojr, olz, ojz)
         else:
             #Set up the actionAngleStaeckelSingle object
             aASingle = actionAngleStaeckelSingle(*args,
                                                  pot=self._pot,
                                                  delta=delta)
             return (aASingle.JR(**copy.copy(kwargs)),
                     aASingle._R * aASingle._vT,
                     aASingle.Jz(**copy.copy(kwargs)))
Пример #9
0
 def _uminumaxvmin(self, *args, **kwargs):
     """
     NAME:
        _uminumaxvmin
     PURPOSE:
        evaluate u_min, u_max, and v_min
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
         c= True/False; overrides the object's c= keyword to use C or not
     OUTPUT:
        (umin,umax,vmin)
     HISTORY:
        2017-12-12 - Written - Bovy (UofT)
     """
     delta = kwargs.pop('delta', self._delta)
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5:  #R,vR.vT, z, vz
             R, vR, vT, z, vz = args
         elif len(args) == 6:  #R,vR.vT, z, vz, phi
             R, vR, vT, z, vz, phi = args
         else:
             self._parse_eval_args(*args)
             R = self._eval_R
             vR = self._eval_vR
             vT = self._eval_vT
             z = self._eval_z
             vz = self._eval_vz
         if isinstance(R, float):
             R = nu.array([R])
             vR = nu.array([vR])
             vT = nu.array([vT])
             z = nu.array([z])
             vz = nu.array([vz])
         Lz = R * vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0 = nu.asarray(kwargs['u0'])
             else:
                 E = nu.array([
                     _evaluatePotentials(self._pot, R[ii], z[ii]) +
                     vR[ii]**2. / 2. + vz[ii]**2. / 2. + vT[ii]**2. / 2.
                     for ii in range(len(R))
                 ])
                 u0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(\
                     E,Lz,self._pot,delta)[0]
             kwargs.pop('u0', None)
         else:
             u0 = None
         umin, umax, vmin, err= \
             actionAngleStaeckel_c.actionAngleUminUmaxVminStaeckel_c(\
             self._pot,delta,R,vR,vT,z,vz,u0=u0)
         if err == 0:
             return (umin, umax, vmin)
         else:  #pragma: no cover
             raise RuntimeError(
                 "C-code for calculation actions failed; try with c=False")
     else:
         if 'c' in kwargs and kwargs['c'] and not self._c:  #pragma: no cover
             warnings.warn(
                 "C module not used because potential does not have a C implementation",
                 galpyWarning)
         kwargs.pop('c', None)
         if (len(args) == 5 or len(args) == 6) \
                 and isinstance(args[0],nu.ndarray):
             oumin = nu.zeros((len(args[0])))
             oumax = nu.zeros((len(args[0])))
             ovmin = nu.zeros((len(args[0])))
             for ii in range(len(args[0])):
                 if len(args) == 5:
                     targs = (args[0][ii], args[1][ii], args[2][ii],
                              args[3][ii], args[4][ii])
                 elif len(args) == 6:
                     targs = (args[0][ii], args[1][ii], args[2][ii],
                              args[3][ii], args[4][ii], args[5][ii])
                 tkwargs = copy.copy(kwargs)
                 try:
                     tkwargs['delta'] = delta[ii]
                 except TypeError:
                     tkwargs['delta'] = delta
                 tumin,tumax,tvmin= self._uminumaxvmin(\
                     *targs,**tkwargs)
                 oumin[ii] = tumin
                 oumax[ii] = tumax
                 ovmin[ii] = tvmin
             return (oumin, oumax, ovmin)
         else:
             #Set up the actionAngleStaeckelSingle object
             aASingle = actionAngleStaeckelSingle(*args,
                                                  pot=self._pot,
                                                  delta=delta)
             umin, umax = aASingle.calcUminUmax()
             vmin = aASingle.calcVmin()
             return (umin, umax, vmin)
Пример #10
0
 def _actionsFreqs(self,*args,**kwargs):
     """
     NAME:
        actionsFreqs (_actionsFreqs)
     PURPOSE:
        evaluate the actions and frequencies (jr,lz,jz,Omegar,Omegaphi,Omegaz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz[,phi]:
              1) floats: phase-space value for single object (phi is optional) (each can be a Quantity)
              2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity)
           b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument
        fixed_quad= (False) if True, use n=10 fixed_quad integration
        scipy.integrate.quadrature or .fixed_quad keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz)
     HISTORY:
        2013-12-28 - Written - Bovy (IAS)
     """
     fixed_quad= kwargs.pop('fixed_quad',False)
     if len(args) == 5: #R,vR.vT, z, vz
         R,vR,vT, z, vz= args
     elif len(args) == 6: #R,vR.vT, z, vz, phi
         R,vR,vT, z, vz, phi= args
     else:
         self._parse_eval_args(*args)
         R= self._eval_R
         vR= self._eval_vR
         vT= self._eval_vT
         z= self._eval_z
         vz= self._eval_vz
     if isinstance(R,float):
         R= nu.array([R])
         vR= nu.array([vR])
         vT= nu.array([vT])
         z= nu.array([z])
         vz= nu.array([vz])
     if self._c: #pragma: no cover
         pass
     else:
         Lz= R*vT
         Lx= -z*vT
         Ly= z*vR-R*vz
         L2= Lx*Lx+Ly*Ly+Lz*Lz
         E= _evaluatePotentials(self._pot,R,z)+vR**2./2.+vT**2./2.+vz**2./2.
         L= nu.sqrt(L2)
         #Actions
         Jphi= Lz
         Jz= L-nu.fabs(Lz)
         #Jr requires some more work
         #Set up an actionAngleAxi object for EL and rap/rperi calculations
         axiR= nu.sqrt(R**2.+z**2.)
         axivT= L/axiR
         axivR= (R*vR+z*vz)/axiR
         Jr= []
         Or= []
         Op= []
         for ii in range(len(axiR)):
             axiaA= actionAngleAxi(axiR[ii],axivR[ii],axivT[ii],
                                   pot=self._2dpot)
             (rperi,rap)= axiaA.calcRapRperi()
             EL= axiaA.calcEL()
             E, L= EL
             Jr.append(self._calc_jr(rperi,rap,E,L,fixed_quad,**kwargs))
             #Radial period
             if Jr[-1] < 10.**-9.: #Circular orbit
                 Or.append(epifreq(self._pot,axiR[ii],use_physical=False))
                 Op.append(omegac(self._pot,axiR[ii],use_physical=False))
                 continue
             Rmean= m.exp((m.log(rperi)+m.log(rap))/2.)
             Or.append(self._calc_or(Rmean,rperi,rap,E,L,fixed_quad,**kwargs))
             Op.append(self._calc_op(Or[-1],Rmean,rperi,rap,E,L,fixed_quad,**kwargs))
         Op= nu.array(Op)
         Oz= copy.copy(Op)
         Op[vT < 0.]*= -1.
         return (nu.array(Jr),Jphi,Jz,nu.array(Or),Op,Oz)
Пример #11
0
 def _actionsFreqsAngles(self,*args,**kwargs):
     """
     NAME:
        _actionsFreqsAngles
     PURPOSE:
        evaluate the actions, frequencies, and angles 
        (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
     INPUT:
        Either:
           a) R,vR,vT,z,vz,phi (MUST HAVE PHI)
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        scipy.integrate.quadrature keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
     HISTORY:
        2013-08-28 - Written - Bovy (IAS)
     """
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5: #R,vR.vT, z, vz pragma: no cover
             raise IOError("Must specify phi")
         elif len(args) == 6: #R,vR.vT, z, vz, phi
             R,vR,vT, z, vz, phi= args
         else:
             self._parse_eval_args(*args)
             R= self._eval_R
             vR= self._eval_vR
             vT= self._eval_vT
             z= self._eval_z
             vz= self._eval_vz
             phi= self._eval_phi
         if isinstance(R,float):
             R= nu.array([R])
             vR= nu.array([vR])
             vT= nu.array([vT])
             z= nu.array([z])
             vz= nu.array([vz])
             phi= nu.array([phi])
         Lz= R*vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0= nu.asarray(kwargs['u0'])
             else:
                 E= nu.array([_evaluatePotentials(self._pot,R[ii],z[ii])
                              +vR[ii]**2./2.+vz[ii]**2./2.+vT[ii]**2./2. for ii in range(len(R))])
                 u0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(E,Lz,
                                                                      self._pot,
                                                                      self._delta)[0]
             kwargs.pop('u0',None)
         else:
             u0= None
         jr, jz, Omegar, Omegaphi, Omegaz, angler, anglephi,anglez, err= actionAngleStaeckel_c.actionAngleFreqAngleStaeckel_c(\
             self._pot,self._delta,R,vR,vT,z,vz,phi,u0=u0)
         # Adjustements for close-to-circular orbits
         indx= nu.isnan(Omegar)*(jr < 10.**-3.)+nu.isnan(Omegaz)*(jz < 10.**-3.) #Close-to-circular and close-to-the-plane orbits
         if nu.sum(indx) > 0:
             Omegar[indx]= [epifreq(self._pot,r,use_physical=False) for r in R[indx]]
             Omegaphi[indx]= [omegac(self._pot,r,use_physical=False) for r in R[indx]]
             Omegaz[indx]= [verticalfreq(self._pot,r,use_physical=False) for r in R[indx]]
         if err == 0:
             return (jr,Lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
         else:
             raise RuntimeError("C-code for calculation actions failed; try with c=False") #pragma: no cover
     else: #pragma: no cover
         if 'c' in kwargs and kwargs['c'] and not self._c: #pragma: no cover
             warnings.warn("C module not used because potential does not have a C implementation",galpyWarning)
         raise NotImplementedError("actionsFreqs with c=False not implemented")
Пример #12
0
 def _EccZmaxRperiRap(self,*args,**kwargs):
     """
     NAME:
        EccZmaxRperiRap (_EccZmaxRperiRap)
     PURPOSE:
        evaluate the eccentricity, maximum height above the plane, peri- and apocenter in the Staeckel approximation
     INPUT:
        Either:
           a) R,vR,vT,z,vz[,phi]:
              1) floats: phase-space value for single object (phi is optional) (each can be a Quantity)
              2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity)
           b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument
     OUTPUT:
        (e,zmax,rperi,rap)
     HISTORY:
        2017-12-15 - Written - Bovy (UofT)
     """
     if len(args) == 5: #R,vR.vT, z, vz
         R,vR,vT, z, vz= args
     elif len(args) == 6: #R,vR.vT, z, vz, phi
         R,vR,vT, z, vz, phi= args
     else:
         self._parse_eval_args(*args)
         R= self._eval_R
         vR= self._eval_vR
         vT= self._eval_vT
         z= self._eval_z
         vz= self._eval_vz
     Lz= R*vT
     Phi= _evaluatePotentials(self._pot,R,z)
     E= Phi+vR**2./2.+vT**2./2.+vz**2./2.
     thisERL= -numpy.exp(self._ERLInterp(Lz))+self._ERLmax
     thisERa= -numpy.exp(self._ERaInterp(Lz))+self._ERamax
     if isinstance(R,numpy.ndarray):
         indx= ((E-thisERa)/(thisERL-thisERa) > 1.)\
             *(((E-thisERa)/(thisERL-thisERa)-1.) < 10.**-2.)
         E[indx]= thisERL[indx]
         indx= ((E-thisERa)/(thisERL-thisERa) < 0.)\
             *((E-thisERa)/(thisERL-thisERa) > -10.**-2.)
         E[indx]= thisERa[indx]
         indx= (Lz < self._Lzmin)
         indx+= (Lz > self._Lzmax)
         indx+= ((E-thisERa)/(thisERL-thisERa) > 1.)
         indx+= ((E-thisERa)/(thisERL-thisERa) < 0.)
         indxc= True^indx
         ecc= numpy.empty(R.shape)
         zmax= numpy.empty(R.shape)
         rperi= numpy.empty(R.shape)
         rap= numpy.empty(R.shape)
         if numpy.sum(indxc) > 0:
             u0= numpy.exp(self._logu0Interp.ev(Lz[indxc],
                                                (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))))
             sinh2u0= numpy.sinh(u0)**2.
             thisEr= self.Er(R[indxc],z[indxc],vR[indxc],vz[indxc],
                             E[indxc],Lz[indxc],sinh2u0,u0)
             thisEz= self.Ez(R[indxc],z[indxc],vR[indxc],vz[indxc],
                             E[indxc],Lz[indxc],sinh2u0,u0)
             thisv2= self.vatu0(E[indxc],Lz[indxc],u0,self._delta*numpy.sinh(u0),retv2=True)
             cos2psi= 2.*thisEr/thisv2/(1.+sinh2u0) #latter is cosh2u0
             cos2psi[(cos2psi > 1.)*(cos2psi < 1.+10.**-5.)]= 1.
             indxCos2psi= (cos2psi > 1.)
             indxCos2psi+= (cos2psi < 0.)
             indxc[indxc]= True^indxCos2psi#Handle these two cases as off-grid
             indx= True^indxc
             psi= numpy.arccos(numpy.sqrt(cos2psi[True^indxCos2psi]))
             coords= numpy.empty((3,numpy.sum(indxc)))
             coords[0,:]= (Lz[indxc]-self._Lzmin)/(self._Lzmax-self._Lzmin)*(self._nLz-1.)
             y= (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))
             coords[1,:]= y*(self._nE-1.)
             coords[2,:]= psi/numpy.pi*2.*(self._npsi-1.)
             ecc[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._eccFiltered,
                                                                         coords,
                                                                         order=3,
                                                                         prefilter=False))-10.**-10.)
             rperi[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._rperiFiltered,
                                                                         coords,
                                                                         order=3,
                                                                         prefilter=False))-10.**-10.)*(numpy.exp(self._rperiLzInterp(Lz[indxc]))-10.**-5.)
             # We do rap below with zmax
             #Switch to Ez-calculated psi
             sin2psi= 2.*thisEz[True^indxCos2psi]/thisv2[True^indxCos2psi]/(1.+sinh2u0[True^indxCos2psi]) #latter is cosh2u0
             sin2psi[(sin2psi > 1.)*(sin2psi < 1.+10.**-5.)]= 1.
             indxSin2psi= (sin2psi > 1.)
             indxSin2psi+= (sin2psi < 0.)
             indxc[indxc]= True^indxSin2psi#Handle these two cases as off-grid
             indx= True^indxc
             psiz= numpy.arcsin(numpy.sqrt(sin2psi[True^indxSin2psi]))
             newcoords= numpy.empty((3,numpy.sum(indxc)))
             newcoords[0:2,:]= coords[0:2,True^indxSin2psi]
             newcoords[2,:]= psiz/numpy.pi*2.*(self._npsi-1.)
             zmax[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._zmaxFiltered,
                                                                        newcoords,
                                                                        order=3,
                                                                        prefilter=False))-10.**-10.)*(numpy.exp(self._zmaxLzInterp(Lz[indxc]))-10.**-5.)
             rap[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._rapFiltered,
                                                                        newcoords,
                                                                        order=3,
                                                                        prefilter=False))-10.**-10.)*(numpy.exp(self._rapLzInterp(Lz[indxc]))-10.**-5.)
         if numpy.sum(indx) > 0:
             eccindiv, zmaxindiv, rperiindiv, rapindiv=\
                 self._aA.EccZmaxRperiRap(R[indx],
                                          vR[indx],
                                          vT[indx],
                                          z[indx],
                                          vz[indx],
                                          **kwargs)
             ecc[indx]= eccindiv
             zmax[indx]= zmaxindiv
             rperi[indx]= rperiindiv
             rap[indx]= rapindiv
     else:
         ecc,zmax,rperi,rap= self.EccZmaxRperiRap(numpy.array([R]),
                                                  numpy.array([vR]),
                                                  numpy.array([vT]),
                                                  numpy.array([z]),
                                                  numpy.array([vz]),
                                                  **kwargs)
         return (ecc[0],zmax[0],rperi[0],rap[0])
     ecc[ecc < 0.]= 0.
     zmax[zmax < 0.]= 0.
     rperi[rperi < 0.]= 0.
     rap[rap < 0.]= 0.
     return (ecc,zmax,rperi,rap)
Пример #13
0
 def _evaluate(self, *args, **kwargs):
     """
     NAME:
        _evaluate
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        fixed_quad= (False) if True, use n=10 fixed_quad integration
        scipy.integrate.quadrature keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2013-12-28 - Written - Bovy (IAS)
     """
     fixed_quad = kwargs.pop('fixed_quad', False)
     if len(args) == 5:  #R,vR.vT, z, vz
         R, vR, vT, z, vz = args
     elif len(args) == 6:  #R,vR.vT, z, vz, phi
         R, vR, vT, z, vz, phi = args
     else:
         self._parse_eval_args(*args)
         R = self._eval_R
         vR = self._eval_vR
         vT = self._eval_vT
         z = self._eval_z
         vz = self._eval_vz
     if isinstance(R, float):
         R = nu.array([R])
         vR = nu.array([vR])
         vT = nu.array([vT])
         z = nu.array([z])
         vz = nu.array([vz])
     if self._c:  #pragma: no cover
         pass
     else:
         Lz = R * vT
         Lx = -z * vT
         Ly = z * vR - R * vz
         L2 = Lx * Lx + Ly * Ly + Lz * Lz
         E= _evaluatePotentials(self._pot,R,z)\
             +vR**2./2.+vT**2./2.+vz**2./2.
         L = nu.sqrt(L2)
         #Actions
         Jphi = Lz
         Jz = L - nu.fabs(Lz)
         #Jr requires some more work
         #Set up an actionAngleAxi object for EL and rap/rperi calculations
         axiR = nu.sqrt(R**2. + z**2.)
         axivT = L / axiR
         axivR = (R * vR + z * vz) / axiR
         Jr = []
         for ii in range(len(axiR)):
             axiaA = actionAngleAxi(axiR[ii],
                                    axivR[ii],
                                    axivT[ii],
                                    pot=self._2dpot)
             (rperi, rap) = axiaA.calcRapRperi()
             EL = axiaA.calcEL()
             E, L = EL
             Jr.append(self._calc_jr(rperi, rap, E, L, fixed_quad,
                                     **kwargs))
         return (nu.array(Jr), Jphi, Jz)
Пример #14
0
 def _actionsFreqsAngles(self, *args, **kwargs):
     """
     NAME:
        _actionsFreqsAngles
     PURPOSE:
        evaluate the actions, frequencies, and angles
        (jr,lz,jz,Omegar,Omegaphi,Omegaz,ar,ap,az)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        fixed_quad= (False) if True, use n=10 fixed_quad integration
        scipy.integrate.quadrature keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz,ar,aphi,az)
     HISTORY:
        2013-12-29 - Written - Bovy (IAS)
     """
     fixed_quad = kwargs.pop('fixed_quad', False)
     if len(args) == 5:  #R,vR.vT, z, vz pragma: no cover
         raise IOError("You need to provide phi when calculating angles")
     elif len(args) == 6:  #R,vR.vT, z, vz, phi
         R, vR, vT, z, vz, phi = args
     else:
         self._parse_eval_args(*args)
         R = self._eval_R
         vR = self._eval_vR
         vT = self._eval_vT
         z = self._eval_z
         vz = self._eval_vz
         phi = self._eval_phi
     if isinstance(R, float):
         R = nu.array([R])
         vR = nu.array([vR])
         vT = nu.array([vT])
         z = nu.array([z])
         vz = nu.array([vz])
         phi = nu.array([phi])
     if self._c:  #pragma: no cover
         pass
     else:
         Lz = R * vT
         Lx = -z * vT
         Ly = z * vR - R * vz
         L2 = Lx * Lx + Ly * Ly + Lz * Lz
         E = _evaluatePotentials(
             self._pot, R, z) + vR**2. / 2. + vT**2. / 2. + vz**2. / 2.
         L = nu.sqrt(L2)
         #Actions
         Jphi = Lz
         Jz = L - nu.fabs(Lz)
         #Jr requires some more work
         #Set up an actionAngleAxi object for EL and rap/rperi calculations
         axiR = nu.sqrt(R**2. + z**2.)
         axivT = L / axiR  #these are really spherical coords, called axi bc they go in actionAngleAxi
         axivR = (R * vR + z * vz) / axiR
         axivz = (z * vR - R * vz) / axiR
         Jr = []
         Or = []
         Op = []
         ar = []
         az = []
         #Calculate the longitude of the ascending node
         asc = self._calc_long_asc(z, R, axivz, phi, Lz, L)
         for ii in range(len(axiR)):
             axiaA = actionAngleAxi(axiR[ii],
                                    axivR[ii],
                                    axivT[ii],
                                    pot=self._2dpot)
             (rperi, rap) = axiaA.calcRapRperi()
             EL = axiaA.calcEL()
             E, L = EL
             Jr.append(self._calc_jr(rperi, rap, E, L, fixed_quad,
                                     **kwargs))
             #Radial period
             Rmean = m.exp((m.log(rperi) + m.log(rap)) / 2.)
             if Jr[-1] < 10.**-9.:  #Circular orbit
                 Or.append(epifreq(self._pot, axiR[ii], use_physical=False))
                 Op.append(omegac(self._pot, axiR[ii], use_physical=False))
             else:
                 Or.append(
                     self._calc_or(Rmean, rperi, rap, E, L, fixed_quad,
                                   **kwargs))
                 Op.append(
                     self._calc_op(Or[-1], Rmean, rperi, rap, E, L,
                                   fixed_quad, **kwargs))
             #Angles
             ar.append(
                 self._calc_angler(Or[-1], axiR[ii], Rmean, rperi, rap, E,
                                   L, axivR[ii], fixed_quad, **kwargs))
             az.append(
                 self._calc_anglez(Or[-1], Op[-1], ar[-1], z[ii], axiR[ii],
                                   Rmean, rperi, rap, E, L, Lz[ii],
                                   axivR[ii], axivz[ii], fixed_quad,
                                   **kwargs))
         Op = nu.array(Op)
         Oz = copy.copy(Op)
         Op[vT < 0.] *= -1.
         ap = copy.copy(asc)
         ar = nu.array(ar)
         az = nu.array(az)
         ap[vT < 0.] -= az[vT < 0.]
         ap[vT >= 0.] += az[vT >= 0.]
         ar = ar % (2. * nu.pi)
         ap = ap % (2. * nu.pi)
         az = az % (2. * nu.pi)
         return (nu.array(Jr), Jphi, Jz, nu.array(Or), Op, Oz, ar, ap, az)
Пример #15
0
 def _actionsFreqs(self, *args, **kwargs):
     """
     NAME:
        _actionsFreqs
     PURPOSE:
        evaluate the actions and frequencies (jr,lz,jz,Omegar,Omegaphi,Omegaz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        fixed_quad= (False) if True, use n=10 fixed_quad integration
        scipy.integrate.quadrature keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz)
     HISTORY:
        2013-12-28 - Written - Bovy (IAS)
     """
     fixed_quad = kwargs.pop('fixed_quad', False)
     if len(args) == 5:  #R,vR.vT, z, vz
         R, vR, vT, z, vz = args
     elif len(args) == 6:  #R,vR.vT, z, vz, phi
         R, vR, vT, z, vz, phi = args
     else:
         self._parse_eval_args(*args)
         R = self._eval_R
         vR = self._eval_vR
         vT = self._eval_vT
         z = self._eval_z
         vz = self._eval_vz
     if isinstance(R, float):
         R = nu.array([R])
         vR = nu.array([vR])
         vT = nu.array([vT])
         z = nu.array([z])
         vz = nu.array([vz])
     if self._c:  #pragma: no cover
         pass
     else:
         Lz = R * vT
         Lx = -z * vT
         Ly = z * vR - R * vz
         L2 = Lx * Lx + Ly * Ly + Lz * Lz
         E = _evaluatePotentials(
             self._pot, R, z) + vR**2. / 2. + vT**2. / 2. + vz**2. / 2.
         L = nu.sqrt(L2)
         #Actions
         Jphi = Lz
         Jz = L - nu.fabs(Lz)
         #Jr requires some more work
         #Set up an actionAngleAxi object for EL and rap/rperi calculations
         axiR = nu.sqrt(R**2. + z**2.)
         axivT = L / axiR
         axivR = (R * vR + z * vz) / axiR
         Jr = []
         Or = []
         Op = []
         for ii in range(len(axiR)):
             axiaA = actionAngleAxi(axiR[ii],
                                    axivR[ii],
                                    axivT[ii],
                                    pot=self._2dpot)
             (rperi, rap) = axiaA.calcRapRperi()
             EL = axiaA.calcEL()
             E, L = EL
             Jr.append(self._calc_jr(rperi, rap, E, L, fixed_quad,
                                     **kwargs))
             #Radial period
             if Jr[-1] < 10.**-9.:  #Circular orbit
                 Or.append(epifreq(self._pot, axiR[ii], use_physical=False))
                 Op.append(omegac(self._pot, axiR[ii], use_physical=False))
                 continue
             Rmean = m.exp((m.log(rperi) + m.log(rap)) / 2.)
             Or.append(
                 self._calc_or(Rmean, rperi, rap, E, L, fixed_quad,
                               **kwargs))
             Op.append(
                 self._calc_op(Or[-1], Rmean, rperi, rap, E, L, fixed_quad,
                               **kwargs))
         Op = nu.array(Op)
         Oz = copy.copy(Op)
         Op[vT < 0.] *= -1.
         return (nu.array(Jr), Jphi, Jz, nu.array(Or), Op, Oz)
Пример #16
0
 def _evaluate(self,*args,**kwargs):
     """
     NAME:
        __call__ (_evaluate)
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz[,phi]:
              1) floats: phase-space value for single object (phi is optional) (each can be a Quantity)
              2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity)
           b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument
        fixed_quad= (False) if True, use n=10 fixed_quad integration
        scipy.integrate.quadrature or .fixed_quad keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2013-12-28 - Written - Bovy (IAS)
     """
     fixed_quad= kwargs.pop('fixed_quad',False)
     if len(args) == 5: #R,vR.vT, z, vz
         R,vR,vT, z, vz= args
     elif len(args) == 6: #R,vR.vT, z, vz, phi
         R,vR,vT, z, vz, phi= args
     else:
         self._parse_eval_args(*args)
         R= self._eval_R
         vR= self._eval_vR
         vT= self._eval_vT
         z= self._eval_z
         vz= self._eval_vz
     if isinstance(R,float):
         R= nu.array([R])
         vR= nu.array([vR])
         vT= nu.array([vT])
         z= nu.array([z])
         vz= nu.array([vz])
     if self._c: #pragma: no cover
         pass
     else:
         Lz= R*vT
         Lx= -z*vT
         Ly= z*vR-R*vz
         L2= Lx*Lx+Ly*Ly+Lz*Lz
         E= _evaluatePotentials(self._pot,R,z)\
             +vR**2./2.+vT**2./2.+vz**2./2.
         L= nu.sqrt(L2)
         #Actions
         Jphi= Lz
         Jz= L-nu.fabs(Lz)
         #Jr requires some more work
         #Set up an actionAngleAxi object for EL and rap/rperi calculations
         axiR= nu.sqrt(R**2.+z**2.)
         axivT= L/axiR
         axivR= (R*vR+z*vz)/axiR
         Jr= []
         for ii in range(len(axiR)):
             axiaA= actionAngleAxi(axiR[ii],axivR[ii],axivT[ii],
                                   pot=self._2dpot)
             (rperi,rap)= axiaA.calcRapRperi()
             EL= axiaA.calcEL()
             E, L= EL
             Jr.append(self._calc_jr(rperi,rap,E,L,fixed_quad,**kwargs))
         return (nu.array(Jr),Jphi,Jz)
Пример #17
0
 def _actionsFreqsAngles(self,*args,**kwargs):
     """
     NAME:
        actionsFreqsAngles (_actionsFreqsAngles)
     PURPOSE:
        evaluate the actions, frequencies, and angles
        (jr,lz,jz,Omegar,Omegaphi,Omegaz,ar,ap,az)
     INPUT:
        Either:
           a) R,vR,vT,z,vz[,phi]:
              1) floats: phase-space value for single object (phi is optional) (each can be a Quantity)
              2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity)
           b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument
        fixed_quad= (False) if True, use n=10 fixed_quad integration
        scipy.integrate.quadrature or .fixed_quad keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz,ar,aphi,az)
     HISTORY:
        2013-12-29 - Written - Bovy (IAS)
     """
     fixed_quad= kwargs.pop('fixed_quad',False)
     if len(args) == 5: #R,vR.vT, z, vz pragma: no cover
         raise IOError("You need to provide phi when calculating angles")
     elif len(args) == 6: #R,vR.vT, z, vz, phi
         R,vR,vT, z, vz, phi= args
     else:
         self._parse_eval_args(*args)
         R= self._eval_R
         vR= self._eval_vR
         vT= self._eval_vT
         z= self._eval_z
         vz= self._eval_vz
         phi= self._eval_phi
     if isinstance(R,float):
         R= nu.array([R])
         vR= nu.array([vR])
         vT= nu.array([vT])
         z= nu.array([z])
         vz= nu.array([vz])
         phi= nu.array([phi])
     if self._c: #pragma: no cover
         pass
     else:
         Lz= R*vT
         Lx= -z*vT
         Ly= z*vR-R*vz
         L2= Lx*Lx+Ly*Ly+Lz*Lz
         E= _evaluatePotentials(self._pot,R,z)+vR**2./2.+vT**2./2.+vz**2./2.
         L= nu.sqrt(L2)
         #Actions
         Jphi= Lz
         Jz= L-nu.fabs(Lz)
         #Jr requires some more work
         #Set up an actionAngleAxi object for EL and rap/rperi calculations
         axiR= nu.sqrt(R**2.+z**2.)
         axivT= L/axiR #these are really spherical coords, called axi bc they go in actionAngleAxi
         axivR= (R*vR+z*vz)/axiR
         axivz= (z*vR-R*vz)/axiR
         Jr= []
         Or= []
         Op= []
         ar= []
         az= []
         #Calculate the longitude of the ascending node
         asc= self._calc_long_asc(z,R,axivz,phi,Lz,L)
         for ii in range(len(axiR)):
             axiaA= actionAngleAxi(axiR[ii],axivR[ii],axivT[ii],
                                   pot=self._2dpot)
             (rperi,rap)= axiaA.calcRapRperi()
             EL= axiaA.calcEL()
             E, L= EL
             Jr.append(self._calc_jr(rperi,rap,E,L,fixed_quad,**kwargs))
             #Radial period
             Rmean= m.exp((m.log(rperi)+m.log(rap))/2.)
             if Jr[-1] < 10.**-9.: #Circular orbit
                 Or.append(epifreq(self._pot,axiR[ii],use_physical=False))
                 Op.append(omegac(self._pot,axiR[ii],use_physical=False))
             else:
                 Or.append(self._calc_or(Rmean,rperi,rap,E,L,fixed_quad,**kwargs))
                 Op.append(self._calc_op(Or[-1],Rmean,rperi,rap,E,L,fixed_quad,**kwargs))
             #Angles
             ar.append(self._calc_angler(Or[-1],axiR[ii],Rmean,rperi,rap,
                                         E,L,axivR[ii],fixed_quad,**kwargs))
             az.append(self._calc_anglez(Or[-1],Op[-1],ar[-1],
                                         z[ii],axiR[ii],
                                         Rmean,rperi,rap,E,L,Lz[ii],
                                         axivR[ii],axivz[ii],
                                         fixed_quad,**kwargs))
         Op= nu.array(Op)
         Oz= copy.copy(Op)
         Op[vT < 0.]*= -1.
         ap= copy.copy(asc)
         ar= nu.array(ar)
         az= nu.array(az)
         ap[vT < 0.]-= az[vT < 0.]
         ap[vT >= 0.]+= az[vT >= 0.]
         ar= ar % (2.*nu.pi)
         ap= ap % (2.*nu.pi)
         az= az % (2.*nu.pi)
         return (nu.array(Jr),Jphi,Jz,nu.array(Or),Op,Oz,
                 ar,ap,az)
Пример #18
0
    def __init__(self,pot=None,zmax=1.,gamma=1.,Rmax=5.,
                 nR=16,nEz=16,nEr=31,nLz=31,numcores=1,
                 **kwargs):
        """
        NAME:
           __init__
        PURPOSE:
           initialize an actionAngleAdiabaticGrid object
        INPUT:

           pot= potential or list of potentials

           zmax= zmax for building Ez grid

           Rmax = Rmax for building grids

           gamma= (default=1.) replace Lz by Lz+gamma Jz in effective potential

           nEz=, nEr=, nLz, nR= grid size

           numcores= number of cpus to use to parallellize

           c= if True, use C to calculate actions

           ro= distance from vantage point to GC (kpc; can be Quantity)

           vo= circular velocity at ro (km/s; can be Quantity)

           +scipy.integrate.quad keywords

        OUTPUT:

           instance

        HISTORY:

            2012-07-27 - Written - Bovy (IAS@MPIA)

        """
        actionAngle.__init__(self,
                             ro=kwargs.get('ro',None),vo=kwargs.get('vo',None))
        if pot is None: #pragma: no cover
            raise IOError("Must specify pot= for actionAngleAxi")
        self._c= kwargs.pop('c',False)
        self._gamma= gamma
        self._pot= pot
        self._zmax= zmax
        self._Rmax= Rmax
        self._Rmin= 0.01
        #Set up the actionAngleAdiabatic object that we will use to interpolate
        self._aA= actionAngleAdiabatic(pot=self._pot,gamma=self._gamma,
                                       c=self._c)
        #Build grid for Ez, first calculate Ez(zmax;R) function
        self._Rs= numpy.linspace(self._Rmin,self._Rmax,nR)
        self._EzZmaxs= _evaluatePotentials(self._pot,self._Rs,
                                           self._zmax*numpy.ones(nR))\
                                           -_evaluatePotentials(self._pot,self._Rs,numpy.zeros(nR))
        self._EzZmaxsInterp= interpolate.InterpolatedUnivariateSpline(self._Rs,numpy.log(self._EzZmaxs),k=3)
        y= numpy.linspace(0.,1.,nEz)
        jz= numpy.zeros((nR,nEz))
        jzEzzmax= numpy.zeros(nR)
        thisRs= (numpy.tile(self._Rs,(nEz,1)).T).flatten()
        thisEzZmaxs= (numpy.tile(self._EzZmaxs,(nEz,1)).T).flatten()
        thisy= (numpy.tile(y,(nR,1))).flatten()
        if self._c:
            jz= self._aA(thisRs,
                         numpy.zeros(len(thisRs)),
                         numpy.ones(len(thisRs)),#these two r dummies
                         numpy.zeros(len(thisRs)),
                         numpy.sqrt(2.*thisy*thisEzZmaxs),
                         **kwargs)[2]
            jz= numpy.reshape(jz,(nR,nEz))
            jzEzzmax[0:nR]= jz[:,nEz-1]
        else:
            if numcores > 1:
                jz= multi.parallel_map((lambda x: self._aA(thisRs[x],0.,1.,#these two r dummies
                                                              0.,math.sqrt(2.*thisy[x]*thisEzZmaxs[x]),
                                                           _justjz=True,
                                                           **kwargs)[2]),
                                       range(nR*nEz),numcores=numcores)
                jz= numpy.reshape(jz,(nR,nEz))
                jzEzzmax[0:nR]= jz[:,nEz-1]
            else:
                for ii in range(nR):
                    for jj in range(nEz):
                        #Calculate Jz
                        jz[ii,jj]= self._aA(self._Rs[ii],0.,1.,#these two r dummies
                                            0.,numpy.sqrt(2.*y[jj]*self._EzZmaxs[ii]),
                                            _justjz=True,**kwargs)[2]
                        if jj == nEz-1: 
                            jzEzzmax[ii]= jz[ii,jj]
        for ii in range(nR): jz[ii,:]/= jzEzzmax[ii]
        #First interpolate Ez=Ezmax
        self._jzEzmaxInterp= interpolate.InterpolatedUnivariateSpline(self._Rs,numpy.log(jzEzzmax+10.**-5.),k=3)
        self._jz= jz
        self._jzInterp= interpolate.RectBivariateSpline(self._Rs,
                                                        y,
                                                        jz,
                                                        kx=3,ky=3,s=0.)
        #JR grid
        self._Lzmin= 0.01
        self._Lzs= numpy.linspace(self._Lzmin,
                                  self._Rmax\
                                      *galpy.potential.vcirc(self._pot,
                                                             self._Rmax),
                                  nLz)
        self._Lzmax= self._Lzs[-1]
        #Calculate ER(vr=0,R=RL)
        self._RL= numpy.array([galpy.potential.rl(self._pot,l) for l in self._Lzs])
        self._RLInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                 self._RL,k=3)
        self._ERRL= _evaluatePotentials(self._pot,self._RL,numpy.zeros(nLz)) +self._Lzs**2./2./self._RL**2.
        self._ERRLmax= numpy.amax(self._ERRL)+1.
        self._ERRLInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                   numpy.log(-(self._ERRL-self._ERRLmax)),k=3)
        self._Ramax= 99.
        self._ERRa= _evaluatePotentials(self._pot,self._Ramax,0.) +self._Lzs**2./2./self._Ramax**2.
        self._ERRamax= numpy.amax(self._ERRa)+1.
        self._ERRaInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                   numpy.log(-(self._ERRa-self._ERRamax)),k=3)
        y= numpy.linspace(0.,1.,nEr)
        jr= numpy.zeros((nLz,nEr))
        jrERRa= numpy.zeros(nLz)
        thisRL= (numpy.tile(self._RL,(nEr-1,1)).T).flatten()
        thisLzs= (numpy.tile(self._Lzs,(nEr-1,1)).T).flatten()
        thisERRL= (numpy.tile(self._ERRL,(nEr-1,1)).T).flatten()
        thisERRa= (numpy.tile(self._ERRa,(nEr-1,1)).T).flatten()
        thisy= (numpy.tile(y[0:-1],(nLz,1))).flatten()
        if self._c:
            mjr= self._aA(thisRL,
                          numpy.sqrt(2.*(thisERRa+thisy*(thisERRL-thisERRa)-_evaluatePotentials(self._pot,thisRL,numpy.zeros((nEr-1)*nLz)))-thisLzs**2./thisRL**2.),
                          thisLzs/thisRL,
                          numpy.zeros(len(thisRL)),
                          numpy.zeros(len(thisRL)),
                          **kwargs)[0]
            jr[:,0:-1]= numpy.reshape(mjr,(nLz,nEr-1))
            jrERRa[0:nLz]= jr[:,0]
        else:
            if numcores > 1:
                mjr= multi.parallel_map((lambda x: self._aA(thisRL[x],
                                                          numpy.sqrt(2.*(thisERRa[x]+thisy[x]*(thisERRL[x]-thisERRa[x])-_evaluatePotentials(self._pot,thisRL[x],0.))-thisLzs[x]**2./thisRL[x]**2.),
                                                               thisLzs[x]/thisRL[x],
                                                               0.,0.,
                                                            _justjr=True,
                                                            **kwargs)[0]),
                                        range((nEr-1)*nLz),
                                        numcores=numcores)
                jr[:,0:-1]= numpy.reshape(mjr,(nLz,nEr-1))
                jrERRa[0:nLz]= jr[:,0]
            else:
                for ii in range(nLz):
                    for jj in range(nEr-1): #Last one is zero by construction
                        try:
                            jr[ii,jj]= self._aA(self._RL[ii],
                                                numpy.sqrt(2.*(self._ERRa[ii]+y[jj]*(self._ERRL[ii]-self._ERRa[ii])-_evaluatePotentials(self._pot,self._RL[ii],0.))-self._Lzs[ii]**2./self._RL[ii]**2.),
                                                self._Lzs[ii]/self._RL[ii],
                                                0.,0.,
                                                _justjr=True,
                                                   **kwargs)[0]
                        except UnboundError: #pragma: no cover
                            raise
                        if jj == 0: 
                            jrERRa[ii]= jr[ii,jj]
        for ii in range(nLz): jr[ii,:]/= jrERRa[ii]
        #First interpolate Ez=Ezmax
        self._jr= jr
        self._jrERRaInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                     numpy.log(jrERRa+10.**-5.),k=3)
        self._jrInterp= interpolate.RectBivariateSpline(self._Lzs,
                                                        y,
                                                        jr,
                                                        kx=3,ky=3,s=0.)
        # Check the units
        self._check_consistent_units()
        return None
Пример #19
0
 def _actionsFreqsAngles(self, *args, **kwargs):
     """
     NAME:
        _actionsFreqsAngles
     PURPOSE:
        evaluate the actions, frequencies, and angles 
        (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
     INPUT:
        Either:
           a) R,vR,vT,z,vz,phi (MUST HAVE PHI)
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        scipy.integrate.quadrature keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
     HISTORY:
        2013-08-28 - Written - Bovy (IAS)
     """
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5:  #R,vR.vT, z, vz pragma: no cover
             raise IOError("Must specify phi")
         elif len(args) == 6:  #R,vR.vT, z, vz, phi
             R, vR, vT, z, vz, phi = args
         else:
             self._parse_eval_args(*args)
             R = self._eval_R
             vR = self._eval_vR
             vT = self._eval_vT
             z = self._eval_z
             vz = self._eval_vz
             phi = self._eval_phi
         if isinstance(R, float):
             R = nu.array([R])
             vR = nu.array([vR])
             vT = nu.array([vT])
             z = nu.array([z])
             vz = nu.array([vz])
             phi = nu.array([phi])
         Lz = R * vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0 = nu.asarray(kwargs['u0'])
             else:
                 E = nu.array([
                     _evaluatePotentials(self._pot, R[ii], z[ii]) +
                     vR[ii]**2. / 2. + vz[ii]**2. / 2. + vT[ii]**2. / 2.
                     for ii in range(len(R))
                 ])
                 u0 = actionAngleStaeckel_c.actionAngleStaeckel_calcu0(
                     E, Lz, self._pot, self._delta)[0]
             kwargs.pop('u0', None)
         else:
             u0 = None
         jr, jz, Omegar, Omegaphi, Omegaz, angler, anglephi,anglez, err= actionAngleStaeckel_c.actionAngleFreqAngleStaeckel_c(\
             self._pot,self._delta,R,vR,vT,z,vz,phi,u0=u0)
         # Adjustements for close-to-circular orbits
         indx = nu.isnan(Omegar) * (jr < 10.**-3.) + nu.isnan(Omegaz) * (
             jz < 10.**-3.
         )  #Close-to-circular and close-to-the-plane orbits
         if nu.sum(indx) > 0:
             Omegar[indx] = [
                 epifreq(self._pot, r, use_physical=False) for r in R[indx]
             ]
             Omegaphi[indx] = [
                 omegac(self._pot, r, use_physical=False) for r in R[indx]
             ]
             Omegaz[indx] = [
                 verticalfreq(self._pot, r, use_physical=False)
                 for r in R[indx]
             ]
         if err == 0:
             return (jr, Lz, jz, Omegar, Omegaphi, Omegaz, angler, anglephi,
                     anglez)
         else:
             raise RuntimeError(
                 "C-code for calculation actions failed; try with c=False"
             )  #pragma: no cover
     else:  #pragma: no cover
         if 'c' in kwargs and kwargs['c'] and not self._c:  #pragma: no cover
             warnings.warn(
                 "C module not used because potential does not have a C implementation",
                 galpyWarning)
         raise NotImplementedError(
             "actionsFreqs with c=False not implemented")
Пример #20
0
 def _evaluate(self, *args, **kwargs):
     """
     NAME:
        _evaluate
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
        scipy.integrate.quadrature keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2012-07-27 - Written - Bovy (IAS@MPIA)
     NOTE:
        For a Miyamoto-Nagai potential, this seems accurate to 0.1% and takes ~0.13 ms
        For a MWPotential, this takes ~ 0.17 ms
     """
     if len(args) == 5:  #R,vR.vT, z, vz
         R, vR, vT, z, vz = args
     elif len(args) == 6:  #R,vR.vT, z, vz, phi
         R, vR, vT, z, vz, phi = args
     else:
         self._parse_eval_args(*args)
         R = self._eval_R
         vR = self._eval_vR
         vT = self._eval_vT
         z = self._eval_z
         vz = self._eval_vz
     #First work on the vertical action
     Phi = _evaluatePotentials(self._pot, R, z)
     try:
         Phio = _evaluatePotentials(self._pot, R, numpy.zeros(len(R)))
     except TypeError:
         Phio = _evaluatePotentials(self._pot, R, 0.)
     Ez = Phi - Phio + vz**2. / 2.
     #Bigger than Ezzmax?
     thisEzZmax = numpy.exp(self._EzZmaxsInterp(R))
     if isinstance(R, numpy.ndarray):
         indx = (R > self._Rmax)
         indx += (R < self._Rmin)
         indx += (Ez != 0.) * (numpy.log(Ez) > thisEzZmax)
         indxc = True ^ indx
         jz = numpy.empty(R.shape)
         if numpy.sum(indxc) > 0:
             jz[indxc]= (self._jzInterp.ev(R[indxc],Ez[indxc]/thisEzZmax[indxc])\
                             *(numpy.exp(self._jzEzmaxInterp(R[indxc]))-10.**-5.))
         if numpy.sum(indx) > 0:
             jz[indx] = self._aA(
                 R[indx],
                 numpy.zeros(numpy.sum(indx)),
                 numpy.ones(numpy.sum(indx)),  #these two r dummies
                 numpy.zeros(numpy.sum(indx)),
                 numpy.sqrt(2. * Ez[indx]),
                 _justjz=True,
                 **kwargs)[2]
     else:
         if R > self._Rmax or R < self._Rmin or (
                 Ez != 0
                 and numpy.log(Ez) > thisEzZmax):  #Outside of the grid
             if _PRINTOUTSIDEGRID:  #pragma: no cover
                 print("Outside of grid in Ez", R > self._Rmax,
                       R < self._Rmin,
                       (Ez != 0 and numpy.log(Ez) > thisEzZmax))
             jz = self._aA(
                 R,
                 0.,
                 1.,  #these two r dummies
                 0.,
                 math.sqrt(2. * Ez),
                 _justjz=True,
                 **kwargs)[2]
         else:
             jz= (self._jzInterp(R,Ez/thisEzZmax)\
                      *(numpy.exp(self._jzEzmaxInterp(R))-10.**-5.))[0][0]
     #Radial action
     ERLz = numpy.fabs(R * vT) + self._gamma * jz
     ER = Phio + vR**2. / 2. + ERLz**2. / 2. / R**2.
     thisRL = self._RLInterp(ERLz)
     thisERRL = -numpy.exp(self._ERRLInterp(ERLz)) + self._ERRLmax
     thisERRa = -numpy.exp(self._ERRaInterp(ERLz)) + self._ERRamax
     if isinstance(R, numpy.ndarray):
         indx= ((ER-thisERRa)/(thisERRL-thisERRa) > 1.)\
             *(((ER-thisERRa)/(thisERRL-thisERRa)-1.) < 10.**-2.)
         ER[indx] = thisERRL[indx]
         indx= ((ER-thisERRa)/(thisERRL-thisERRa) < 0.)\
             *((ER-thisERRa)/(thisERRL-thisERRa) > -10.**-2.)
         ER[indx] = thisERRa[indx]
         indx = (ERLz < self._Lzmin)
         indx += (ERLz > self._Lzmax)
         indx += ((ER - thisERRa) / (thisERRL - thisERRa) > 1.)
         indx += ((ER - thisERRa) / (thisERRL - thisERRa) < 0.)
         indxc = True ^ indx
         jr = numpy.empty(R.shape)
         if numpy.sum(indxc) > 0:
             jr[indxc]= (self._jrInterp.ev(ERLz[indxc],
                                           (ER[indxc]-thisERRa[indxc])/(thisERRL[indxc]-thisERRa[indxc]))\
                             *(numpy.exp(self._jrERRaInterp(ERLz[indxc]))-10.**-5.))
         if numpy.sum(indx) > 0:
             jr[indx] = self._aA(
                 thisRL[indx],
                 numpy.sqrt(
                     2. *
                     (ER[indx] -
                      _evaluatePotentials(self._pot, thisRL[indx], 0.)) -
                     ERLz[indx]**2. / thisRL[indx]**2.),
                 ERLz[indx] / thisRL[indx],
                 numpy.zeros(len(thisRL)),
                 numpy.zeros(len(thisRL)),
                 _justjr=True,
                 **kwargs)[0]
     else:
         if (ER-thisERRa)/(thisERRL-thisERRa) > 1. \
                 and ((ER-thisERRa)/(thisERRL-thisERRa)-1.) < 10.**-2.:
             ER = thisERRL
         elif (ER-thisERRa)/(thisERRL-thisERRa) < 0. \
                 and (ER-thisERRa)/(thisERRL-thisERRa) > -10.**-2.:
             ER = thisERRa
         #Outside of grid?
         if ERLz < self._Lzmin or ERLz > self._Lzmax \
                 or (ER-thisERRa)/(thisERRL-thisERRa) > 1. \
                 or (ER-thisERRa)/(thisERRL-thisERRa) < 0.:
             if _PRINTOUTSIDEGRID:  #pragma: no cover
                 print("Outside of grid in ER/Lz", ERLz < self._Lzmin , ERLz > self._Lzmax \
                     , (ER-thisERRa)/(thisERRL-thisERRa) > 1. \
                     , (ER-thisERRa)/(thisERRL-thisERRa) < 0., ER, thisERRL, thisERRa, (ER-thisERRa)/(thisERRL-thisERRa))
             jr = self._aA(
                 thisRL[0],
                 numpy.sqrt(
                     2. *
                     (ER - _evaluatePotentials(self._pot, thisRL, 0.)) -
                     ERLz**2. / thisRL**2.)[0], (ERLz / thisRL)[0],
                 0.,
                 0.,
                 _justjr=True,
                 **kwargs)[0]
         else:
             jr= (self._jrInterp(ERLz,
                                 (ER-thisERRa)/(thisERRL-thisERRa))\
                      *(numpy.exp(self._jrERRaInterp(ERLz))-10.**-5.))[0][0]
     return (jr, R * vT, jz)
Пример #21
0
 def _evaluate(self,*args,**kwargs):
     """
     NAME:
        _evaluate
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           R,vR,vT,z,vz
        scipy.integrate.quadrature keywords (for off-the-grid calcs)
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2012-11-29 - Written - Bovy (IAS)
     """
     if len(args) == 5: #R,vR.vT, z, vz
         R,vR,vT, z, vz= args
     elif len(args) == 6: #R,vR.vT, z, vz, phi
         R,vR,vT, z, vz, phi= args
     else:
         self._parse_eval_args(*args)
         R= self._eval_R
         vR= self._eval_vR
         vT= self._eval_vT
         z= self._eval_z
         vz= self._eval_vz
     Lz= R*vT
     Phi= _evaluatePotentials(self._pot,R,z)
     E= Phi+vR**2./2.+vT**2./2.+vz**2./2.
     thisERL= -numpy.exp(self._ERLInterp(Lz))+self._ERLmax
     thisERa= -numpy.exp(self._ERaInterp(Lz))+self._ERamax
     if isinstance(R,numpy.ndarray):
         indx= ((E-thisERa)/(thisERL-thisERa) > 1.)\
             *(((E-thisERa)/(thisERL-thisERa)-1.) < 10.**-2.)
         E[indx]= thisERL[indx]
         indx= ((E-thisERa)/(thisERL-thisERa) < 0.)\
             *((E-thisERa)/(thisERL-thisERa) > -10.**-2.)
         E[indx]= thisERa[indx]
         indx= (Lz < self._Lzmin)
         indx+= (Lz > self._Lzmax)
         indx+= ((E-thisERa)/(thisERL-thisERa) > 1.)
         indx+= ((E-thisERa)/(thisERL-thisERa) < 0.)
         indxc= True-indx
         jr= numpy.empty(R.shape)
         jz= numpy.empty(R.shape)
         if numpy.sum(indxc) > 0:
             u0= numpy.exp(self._logu0Interp.ev(Lz[indxc],
                                                (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))))
             sinh2u0= numpy.sinh(u0)**2.
             thisEr= self.Er(R[indxc],z[indxc],vR[indxc],vz[indxc],
                             E[indxc],Lz[indxc],sinh2u0,u0)
             thisEz= self.Ez(R[indxc],z[indxc],vR[indxc],vz[indxc],
                             E[indxc],Lz[indxc],sinh2u0,u0)
             thisv2= self.vatu0(E[indxc],Lz[indxc],u0,self._delta*numpy.sinh(u0),retv2=True)
             cos2psi= 2.*thisEr/thisv2/(1.+sinh2u0) #latter is cosh2u0
             cos2psi[(cos2psi > 1.)*(cos2psi < 1.+10.**-5.)]= 1.
             indxCos2psi= (cos2psi > 1.)
             indxCos2psi+= (cos2psi < 0.)
             indxc[indxc]= True-indxCos2psi#Handle these two cases as off-grid
             indx= True-indxc
             psi= numpy.arccos(numpy.sqrt(cos2psi[True-indxCos2psi]))
             coords= numpy.empty((3,numpy.sum(indxc)))
             coords[0,:]= (Lz[indxc]-self._Lzmin)/(self._Lzmax-self._Lzmin)*(self._nLz-1.)
             y= (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))
             coords[1,:]= y*(self._nE-1.)
             coords[2,:]= psi/numpy.pi*2.*(self._npsi-1.)
             jr[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._jrFiltered,
                                                                         coords,
                                                                         order=3,
                                                                         prefilter=False))-10.**-10.)*(numpy.exp(self._jrLzInterp(Lz[indxc]))-10.**-5.)
             #Switch to Ez-calculated psi
             sin2psi= 2.*thisEz[True-indxCos2psi]/thisv2[True-indxCos2psi]/(1.+sinh2u0[True-indxCos2psi]) #latter is cosh2u0
             sin2psi[(sin2psi > 1.)*(sin2psi < 1.+10.**-5.)]= 1.
             indxSin2psi= (sin2psi > 1.)
             indxSin2psi+= (sin2psi < 0.)
             indxc[indxc]= True-indxSin2psi#Handle these two cases as off-grid
             indx= True-indxc
             psiz= numpy.arcsin(numpy.sqrt(sin2psi[True-indxSin2psi]))
             newcoords= numpy.empty((3,numpy.sum(indxc)))
             newcoords[0:2,:]= coords[0:2,True-indxSin2psi]
             newcoords[2,:]= psiz/numpy.pi*2.*(self._npsi-1.)
             jz[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._jzFiltered,
                                                                        newcoords,
                                                                        order=3,
                                                                        prefilter=False))-10.**-10.)*(numpy.exp(self._jzLzInterp(Lz[indxc]))-10.**-5.)
         if numpy.sum(indx) > 0:
             jrindiv, lzindiv, jzindiv= self._aA(R[indx],
                                                 vR[indx],
                                                 vT[indx],
                                                 z[indx],
                                                 vz[indx],
                                                 **kwargs)
             jr[indx]= jrindiv
             jz[indx]= jzindiv
             """
             jrindiv= numpy.empty(numpy.sum(indx))
             jzindiv= numpy.empty(numpy.sum(indx))
             for ii in range(numpy.sum(indx)):
                 try:
                     thisaA= actionAngleStaeckel.actionAngleStaeckelSingle(\
                         R[indx][ii], #R
                         vR[indx][ii], #vR
                         vT[indx][ii], #vT
                         z[indx][ii], #z
                         vz[indx][ii], #vz
                         pot=self._pot,delta=self._delta)
                     jrindiv[ii]= thisaA.JR(fixed_quad=True)[0]
                     jzindiv[ii]= thisaA.Jz(fixed_quad=True)[0]
                 except (UnboundError,OverflowError):
                     jrindiv[ii]= numpy.nan
                     jzindiv[ii]= numpy.nan
             jr[indx]= jrindiv
             jz[indx]= jzindiv
             """
     else:
         jr,Lz, jz= self(numpy.array([R]),
                         numpy.array([vR]),
                         numpy.array([vT]),
                         numpy.array([z]),
                         numpy.array([vz]),
                         **kwargs)
         return (jr[0],Lz[0],jz[0])
     jr[jr < 0.]= 0.
     jz[jz < 0.]= 0.
     return (jr,R*vT,jz)
Пример #22
0
 def _evaluate(self, *args, **kwargs):
     """
     NAME:
        _evaluate
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
         c= True/False; overrides the object's c= keyword to use C or not
        scipy.integrate.quadrature keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2012-11-27 - Written - Bovy (IAS)
     """
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5:  #R,vR.vT, z, vz
             R, vR, vT, z, vz = args
         elif len(args) == 6:  #R,vR.vT, z, vz, phi
             R, vR, vT, z, vz, phi = args
         else:
             self._parse_eval_args(*args)
             R = self._eval_R
             vR = self._eval_vR
             vT = self._eval_vT
             z = self._eval_z
             vz = self._eval_vz
         if isinstance(R, float):
             R = nu.array([R])
             vR = nu.array([vR])
             vT = nu.array([vT])
             z = nu.array([z])
             vz = nu.array([vz])
         Lz = R * vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0 = nu.asarray(kwargs['u0'])
             else:
                 E = nu.array([
                     _evaluatePotentials(self._pot, R[ii], z[ii]) +
                     vR[ii]**2. / 2. + vz[ii]**2. / 2. + vT[ii]**2. / 2.
                     for ii in range(len(R))
                 ])
                 u0 = actionAngleStaeckel_c.actionAngleStaeckel_calcu0(
                     E, Lz, self._pot, self._delta)[0]
             kwargs.pop('u0', None)
         else:
             u0 = None
         jr, jz, err= actionAngleStaeckel_c.actionAngleStaeckel_c(\
             self._pot,self._delta,R,vR,vT,z,vz,u0=u0)
         if err == 0:
             return (jr, Lz, jz)
         else:  #pragma: no cover
             raise RuntimeError(
                 "C-code for calculation actions failed; try with c=False")
     else:
         if 'c' in kwargs and kwargs['c'] and not self._c:  #pragma: no cover
             warnings.warn(
                 "C module not used because potential does not have a C implementation",
                 galpyWarning)
         kwargs.pop('c', None)
         if (len(args) == 5 or len(args) == 6) \
                 and isinstance(args[0],nu.ndarray):
             ojr = nu.zeros((len(args[0])))
             olz = nu.zeros((len(args[0])))
             ojz = nu.zeros((len(args[0])))
             for ii in range(len(args[0])):
                 if len(args) == 5:
                     targs = (args[0][ii], args[1][ii], args[2][ii],
                              args[3][ii], args[4][ii])
                 elif len(args) == 6:
                     targs = (args[0][ii], args[1][ii], args[2][ii],
                              args[3][ii], args[4][ii], args[5][ii])
                 tjr, tlz, tjz = self(*targs, **copy.copy(kwargs))
                 ojr[ii] = tjr
                 ojz[ii] = tjz
                 olz[ii] = tlz
             return (ojr, olz, ojz)
         else:
             #Set up the actionAngleStaeckelSingle object
             aASingle = actionAngleStaeckelSingle(*args,
                                                  pot=self._pot,
                                                  delta=self._delta)
             return (aASingle.JR(**copy.copy(kwargs)),
                     aASingle._R * aASingle._vT,
                     aASingle.Jz(**copy.copy(kwargs)))
Пример #23
0
 def _evaluate(self,*args,**kwargs):
     """
     NAME:
        _evaluate
     PURPOSE:
        evaluate the actions (jr,lz,jz)
     INPUT:
        Either:
           a) R,vR,vT,z,vz
           b) Orbit instance: initial condition used if that's it, orbit(t)
              if there is a time given as well
         c= True/False; overrides the object's c= keyword to use C or not
        scipy.integrate.quadrature keywords
     OUTPUT:
        (jr,lz,jz)
     HISTORY:
        2012-11-27 - Written - Bovy (IAS)
     """
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5: #R,vR.vT, z, vz
             R,vR,vT, z, vz= args
         elif len(args) == 6: #R,vR.vT, z, vz, phi
             R,vR,vT, z, vz, phi= args
         else:
             self._parse_eval_args(*args)
             R= self._eval_R
             vR= self._eval_vR
             vT= self._eval_vT
             z= self._eval_z
             vz= self._eval_vz
         if isinstance(R,float):
             R= nu.array([R])
             vR= nu.array([vR])
             vT= nu.array([vT])
             z= nu.array([z])
             vz= nu.array([vz])
         Lz= R*vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0= nu.asarray(kwargs['u0'])
             else:
                 E= nu.array([_evaluatePotentials(self._pot,R[ii],z[ii])
                              +vR[ii]**2./2.+vz[ii]**2./2.+vT[ii]**2./2. for ii in range(len(R))])
                 u0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(E,Lz,
                                                                      self._pot,
                                                                      self._delta)[0]
             kwargs.pop('u0',None)
         else:
             u0= None
         jr, jz, err= actionAngleStaeckel_c.actionAngleStaeckel_c(\
             self._pot,self._delta,R,vR,vT,z,vz,u0=u0)
         if err == 0:
             return (jr,Lz,jz)
         else: #pragma: no cover
             raise RuntimeError("C-code for calculation actions failed; try with c=False")
     else:
         if 'c' in kwargs and kwargs['c'] and not self._c: #pragma: no cover
             warnings.warn("C module not used because potential does not have a C implementation",galpyWarning)
         kwargs.pop('c',None)
         if (len(args) == 5 or len(args) == 6) \
                 and isinstance(args[0],nu.ndarray):
             ojr= nu.zeros((len(args[0])))
             olz= nu.zeros((len(args[0])))
             ojz= nu.zeros((len(args[0])))
             for ii in range(len(args[0])):
                 if len(args) == 5:
                     targs= (args[0][ii],args[1][ii],args[2][ii],
                             args[3][ii],args[4][ii])
                 elif len(args) == 6:
                     targs= (args[0][ii],args[1][ii],args[2][ii],
                             args[3][ii],args[4][ii],args[5][ii])
                 tjr,tlz,tjz= self(*targs,**copy.copy(kwargs))
                 ojr[ii]= tjr
                 ojz[ii]= tjz
                 olz[ii]= tlz
             return (ojr,olz,ojz)
         else:
             #Set up the actionAngleStaeckelSingle object
             aASingle= actionAngleStaeckelSingle(*args,pot=self._pot,
                                                  delta=self._delta)
             return (aASingle.JR(**copy.copy(kwargs)),
                     aASingle._R*aASingle._vT,
                     aASingle.Jz(**copy.copy(kwargs)))
Пример #24
0
    def __init__(self,pot=None,delta=None,Rmax=5.,
                 nE=25,npsi=25,nLz=30,numcores=1,
                 **kwargs):
        """
        NAME:
           __init__
        PURPOSE:
           initialize an actionAngleStaeckelGrid object
        INPUT:
           pot= potential or list of potentials

           delta= focus of prolate confocal coordinate system (can be Quantity)

           Rmax = Rmax for building grids (natural units)

           nE=, npsi=, nLz= grid size

           numcores= number of cpus to use to parallellize

           ro= distance from vantage point to GC (kpc; can be Quantity)

           vo= circular velocity at ro (km/s; can be Quantity)

        OUTPUT:
         
           instance

        HISTORY:

            2012-11-29 - Written - Bovy (IAS)

        """
        actionAngle.__init__(self,
                             ro=kwargs.get('ro',None),vo=kwargs.get('vo',None))
        if pot is None:
            raise IOError("Must specify pot= for actionAngleStaeckelGrid")
        self._pot= pot
        if delta is None:
            raise IOError("Must specify delta= for actionAngleStaeckelGrid")
        if ext_loaded and 'c' in kwargs and kwargs['c']:
            self._c= True
        else:
            self._c= False
        self._delta= delta
        if _APY_LOADED and isinstance(self._delta,units.Quantity):
            self._delta= self._delta.to(units.kpc).value/self._ro
        self._Rmax= Rmax
        self._Rmin= 0.01
        #Set up the actionAngleStaeckel object that we will use to interpolate
        self._aA= actionAngleStaeckel.actionAngleStaeckel(pot=self._pot,delta=self._delta,c=self._c)
        #Build grid
        self._Lzmin= 0.01
        self._Lzs= numpy.linspace(self._Lzmin,
                                  self._Rmax\
                                      *galpy.potential.vcirc(self._pot,
                                                             self._Rmax),
                                  nLz)
        self._Lzmax= self._Lzs[-1]
        self._nLz= nLz
        #Calculate E_c(R=RL), energy of circular orbit
        self._RL= numpy.array([galpy.potential.rl(self._pot,l) for l in self._Lzs])
        self._RLInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                 self._RL,k=3)
        self._ERL= _evaluatePotentials(self._pot,self._RL,
                                       numpy.zeros(self._nLz))\
                                       +self._Lzs**2./2./self._RL**2.
        self._ERLmax= numpy.amax(self._ERL)+1.
        self._ERLInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                  numpy.log(-(self._ERL-self._ERLmax)),k=3)
        self._Ramax= 200./8.
        self._ERa= _evaluatePotentials(self._pot,self._Ramax,0.) +self._Lzs**2./2./self._Ramax**2.
        #self._EEsc= numpy.array([self._ERL[ii]+galpy.potential.vesc(self._pot,self._RL[ii])**2./4. for ii in range(nLz)])
        self._ERamax= numpy.amax(self._ERa)+1.
        self._ERaInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                  numpy.log(-(self._ERa-self._ERamax)),k=3)
        y= numpy.linspace(0.,1.,nE)
        self._nE= nE
        psis= numpy.linspace(0.,1.,npsi)*numpy.pi/2.
        self._npsi= npsi
        jr= numpy.zeros((nLz,nE,npsi))
        jz= numpy.zeros((nLz,nE,npsi))
        u0= numpy.zeros((nLz,nE))
        jrLzE= numpy.zeros((nLz))
        jzLzE= numpy.zeros((nLz))
        #First calculate u0
        thisLzs= (numpy.tile(self._Lzs,(nE,1)).T).flatten()
        thisERL= (numpy.tile(self._ERL,(nE,1)).T).flatten()
        thisERa= (numpy.tile(self._ERa,(nE,1)).T).flatten()
        thisy= (numpy.tile(y,(nLz,1))).flatten()
        thisE= _invEfunc(_Efunc(thisERa,thisERL)+thisy*(_Efunc(thisERL,thisERL)-_Efunc(thisERa,thisERL)),thisERL)
        if isinstance(self._pot,galpy.potential.interpRZPotential) and hasattr(self._pot,'_origPot'):
            u0pot= self._pot._origPot
        else:
            u0pot= self._pot
        if self._c:
            mu0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(thisE,thisLzs,
                                                                  u0pot,
                                                                  self._delta)[0]
        else:
            if numcores > 1:
                mu0= multi.parallel_map((lambda x: self.calcu0(thisE[x],
                                                               thisLzs[x])),
                                        range(nE*nLz),
                                        numcores=numcores)
            else:
                mu0= list(map((lambda x: self.calcu0(thisE[x],
                                                     thisLzs[x])),
                              range(nE*nLz)))
        u0= numpy.reshape(mu0,(nLz,nE))
        thisR= self._delta*numpy.sinh(u0)
        thisv= numpy.reshape(self.vatu0(thisE.flatten(),thisLzs.flatten(),
                                        u0.flatten(),
                                        thisR.flatten()),(nLz,nE))
        self.thisv= thisv
        #reshape
        thisLzs= numpy.reshape(thisLzs,(nLz,nE))
        thispsi= numpy.tile(psis,(nLz,nE,1)).flatten()
        thisLzs= numpy.tile(thisLzs.T,(npsi,1,1)).T.flatten()
        thisR= numpy.tile(thisR.T,(npsi,1,1)).T.flatten()
        thisv= numpy.tile(thisv.T,(npsi,1,1)).T.flatten()
        mjr, mlz, mjz= self._aA(thisR, #R
                                thisv*numpy.cos(thispsi), #vR
                                thisLzs/thisR, #vT
                                numpy.zeros(len(thisR)), #z
                                thisv*numpy.sin(thispsi), #vz
                                fixed_quad=True) 
        if isinstance(self._pot,galpy.potential.interpRZPotential) and hasattr(self._pot,'_origPot'):
            #Interpolated potentials have problems with extreme orbits
            indx= (mjr == 9999.99)
            indx+= (mjz == 9999.99)
            #Re-calculate these using the original potential, hopefully not too slow
            tmpaA= actionAngleStaeckel.actionAngleStaeckel(pot=self._pot._origPot,delta=self._delta,c=self._c)
            mjr[indx], dum, mjz[indx]= tmpaA(thisR[indx], #R
                                             thisv[indx]*numpy.cos(thispsi[indx]), #vR
                                             thisLzs[indx]/thisR[indx], #vT
                                             numpy.zeros(numpy.sum(indx)), #z
                                             thisv[indx]*numpy.sin(thispsi[indx]), #vz
                                             fixed_quad=True)
        jr= numpy.reshape(mjr,(nLz,nE,npsi))
        jz= numpy.reshape(mjz,(nLz,nE,npsi))
        for ii in range(nLz):
            jrLzE[ii]= numpy.nanmax(jr[ii,(jr[ii,:,:] != 9999.99)])#:,:])
            jzLzE[ii]= numpy.nanmax(jz[ii,(jz[ii,:,:] != 9999.99)])#:,:])
        jrLzE[(jrLzE == 0.)]= numpy.nanmin(jrLzE[(jrLzE > 0.)])
        jzLzE[(jzLzE == 0.)]= numpy.nanmin(jzLzE[(jzLzE > 0.)])
        for ii in range(nLz):
            jr[ii,:,:]/= jrLzE[ii]
            jz[ii,:,:]/= jzLzE[ii]
        #Deal w/ 9999.99
        jr[(jr > 1.)]= 1.
        jz[(jz > 1.)]= 1.
        #Deal w/ NaN
        jr[numpy.isnan(jr)]= 0.
        jz[numpy.isnan(jz)]= 0.
        #First interpolate the maxima
        self._jr= jr
        self._jz= jz
        self._u0= u0
        self._jrLzE= jrLzE
        self._jzLzE= jzLzE
        self._jrLzInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                   numpy.log(jrLzE+10.**-5.),k=3)
        self._jzLzInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                   numpy.log(jzLzE+10.**-5.),k=3)
        #Interpolate u0
        self._logu0Interp= interpolate.RectBivariateSpline(self._Lzs,
                                                           y,
                                                           numpy.log(u0),
                                                           kx=3,ky=3,s=0.)
        #spline filter jr and jz, such that they can be used with ndimage.map_coordinates
        self._jrFiltered= ndimage.spline_filter(numpy.log(self._jr+10.**-10.),order=3)
        self._jzFiltered= ndimage.spline_filter(numpy.log(self._jz+10.**-10.),order=3)
        # Check the units
        self._check_consistent_units()
        return None
Пример #25
0
    def __init__(self,
                 pot=None,
                 zmax=1.,
                 gamma=1.,
                 Rmax=5.,
                 nR=16,
                 nEz=16,
                 nEr=31,
                 nLz=31,
                 numcores=1,
                 **kwargs):
        """
        NAME:
           __init__
        PURPOSE:
           initialize an actionAngleAdiabaticGrid object
        INPUT:

           pot= potential or list of potentials

           zmax= zmax for building Ez grid

           Rmax = Rmax for building grids

           gamma= (default=1.) replace Lz by Lz+gamma Jz in effective potential

           nEz=, nEr=, nLz, nR= grid size

           numcores= number of cpus to use to parallellize

           c= if True, use C to calculate actions

           ro= distance from vantage point to GC (kpc; can be Quantity)

           vo= circular velocity at ro (km/s; can be Quantity)

           +scipy.integrate.quad keywords

        OUTPUT:

           instance

        HISTORY:

            2012-07-27 - Written - Bovy (IAS@MPIA)

        """
        actionAngle.__init__(self,
                             ro=kwargs.get('ro', None),
                             vo=kwargs.get('vo', None))
        if pot is None:  #pragma: no cover
            raise IOError("Must specify pot= for actionAngleAxi")
        self._c = kwargs.pop('c', False)
        self._gamma = gamma
        self._pot = pot
        self._zmax = zmax
        self._Rmax = Rmax
        self._Rmin = 0.01
        #Set up the actionAngleAdiabatic object that we will use to interpolate
        self._aA = actionAngleAdiabatic(pot=self._pot,
                                        gamma=self._gamma,
                                        c=self._c)
        #Build grid for Ez, first calculate Ez(zmax;R) function
        self._Rs = numpy.linspace(self._Rmin, self._Rmax, nR)
        self._EzZmaxs= _evaluatePotentials(self._pot,self._Rs,
                                           self._zmax*numpy.ones(nR))\
                                           -_evaluatePotentials(self._pot,self._Rs,numpy.zeros(nR))
        self._EzZmaxsInterp = interpolate.InterpolatedUnivariateSpline(
            self._Rs, numpy.log(self._EzZmaxs), k=3)
        y = numpy.linspace(0., 1., nEz)
        jz = numpy.zeros((nR, nEz))
        jzEzzmax = numpy.zeros(nR)
        thisRs = (numpy.tile(self._Rs, (nEz, 1)).T).flatten()
        thisEzZmaxs = (numpy.tile(self._EzZmaxs, (nEz, 1)).T).flatten()
        thisy = (numpy.tile(y, (nR, 1))).flatten()
        if self._c:
            jz = self._aA(
                thisRs,
                numpy.zeros(len(thisRs)),
                numpy.ones(len(thisRs)),  #these two r dummies
                numpy.zeros(len(thisRs)),
                numpy.sqrt(2. * thisy * thisEzZmaxs),
                **kwargs)[2]
            jz = numpy.reshape(jz, (nR, nEz))
            jzEzzmax[0:nR] = jz[:, nEz - 1]
        else:
            if numcores > 1:
                jz = multi.parallel_map(
                    (
                        lambda x: self._aA(
                            thisRs[x],
                            0.,
                            1.,  #these two r dummies
                            0.,
                            math.sqrt(2. * thisy[x] * thisEzZmaxs[x]),
                            _justjz=True,
                            **kwargs)[2]),
                    range(nR * nEz),
                    numcores=numcores)
                jz = numpy.reshape(jz, (nR, nEz))
                jzEzzmax[0:nR] = jz[:, nEz - 1]
            else:
                for ii in range(nR):
                    for jj in range(nEz):
                        #Calculate Jz
                        jz[ii, jj] = self._aA(
                            self._Rs[ii],
                            0.,
                            1.,  #these two r dummies
                            0.,
                            numpy.sqrt(2. * y[jj] * self._EzZmaxs[ii]),
                            _justjz=True,
                            **kwargs)[2]
                        if jj == nEz - 1:
                            jzEzzmax[ii] = jz[ii, jj]
        for ii in range(nR):
            jz[ii, :] /= jzEzzmax[ii]
        #First interpolate Ez=Ezmax
        self._jzEzmaxInterp = interpolate.InterpolatedUnivariateSpline(
            self._Rs, numpy.log(jzEzzmax + 10.**-5.), k=3)
        self._jz = jz
        self._jzInterp = interpolate.RectBivariateSpline(self._Rs,
                                                         y,
                                                         jz,
                                                         kx=3,
                                                         ky=3,
                                                         s=0.)
        #JR grid
        self._Lzmin = 0.01
        self._Lzs= numpy.linspace(self._Lzmin,
                                  self._Rmax\
                                      *galpy.potential.vcirc(self._pot,
                                                             self._Rmax),
                                  nLz)
        self._Lzmax = self._Lzs[-1]
        #Calculate ER(vr=0,R=RL)
        self._RL = numpy.array(
            [galpy.potential.rl(self._pot, l) for l in self._Lzs])
        self._RLInterp = interpolate.InterpolatedUnivariateSpline(self._Lzs,
                                                                  self._RL,
                                                                  k=3)
        self._ERRL = _evaluatePotentials(
            self._pot, self._RL,
            numpy.zeros(nLz)) + self._Lzs**2. / 2. / self._RL**2.
        self._ERRLmax = numpy.amax(self._ERRL) + 1.
        self._ERRLInterp = interpolate.InterpolatedUnivariateSpline(
            self._Lzs, numpy.log(-(self._ERRL - self._ERRLmax)), k=3)
        self._Ramax = 99.
        self._ERRa = _evaluatePotentials(
            self._pot, self._Ramax, 0.) + self._Lzs**2. / 2. / self._Ramax**2.
        self._ERRamax = numpy.amax(self._ERRa) + 1.
        self._ERRaInterp = interpolate.InterpolatedUnivariateSpline(
            self._Lzs, numpy.log(-(self._ERRa - self._ERRamax)), k=3)
        y = numpy.linspace(0., 1., nEr)
        jr = numpy.zeros((nLz, nEr))
        jrERRa = numpy.zeros(nLz)
        thisRL = (numpy.tile(self._RL, (nEr - 1, 1)).T).flatten()
        thisLzs = (numpy.tile(self._Lzs, (nEr - 1, 1)).T).flatten()
        thisERRL = (numpy.tile(self._ERRL, (nEr - 1, 1)).T).flatten()
        thisERRa = (numpy.tile(self._ERRa, (nEr - 1, 1)).T).flatten()
        thisy = (numpy.tile(y[0:-1], (nLz, 1))).flatten()
        if self._c:
            mjr = self._aA(
                thisRL,
                numpy.sqrt(2. *
                           (thisERRa + thisy *
                            (thisERRL - thisERRa) - _evaluatePotentials(
                                self._pot, thisRL, numpy.zeros(
                                    (nEr - 1) * nLz))) -
                           thisLzs**2. / thisRL**2.), thisLzs / thisRL,
                numpy.zeros(len(thisRL)), numpy.zeros(len(thisRL)),
                **kwargs)[0]
            jr[:, 0:-1] = numpy.reshape(mjr, (nLz, nEr - 1))
            jrERRa[0:nLz] = jr[:, 0]
        else:
            if numcores > 1:
                mjr = multi.parallel_map((lambda x: self._aA(
                    thisRL[x],
                    numpy.sqrt(2. *
                               (thisERRa[x] + thisy[x] *
                                (thisERRL[x] - thisERRa[x]) -
                                _evaluatePotentials(self._pot, thisRL[
                                    x], 0.)) - thisLzs[x]**2. / thisRL[x]**2.),
                    thisLzs[x] / thisRL[x],
                    0.,
                    0.,
                    _justjr=True,
                    **kwargs)[0]),
                                         range((nEr - 1) * nLz),
                                         numcores=numcores)
                jr[:, 0:-1] = numpy.reshape(mjr, (nLz, nEr - 1))
                jrERRa[0:nLz] = jr[:, 0]
            else:
                for ii in range(nLz):
                    for jj in range(nEr -
                                    1):  #Last one is zero by construction
                        try:
                            jr[ii, jj] = self._aA(
                                self._RL[ii],
                                numpy.sqrt(2. *
                                           (self._ERRa[ii] + y[jj] *
                                            (self._ERRL[ii] - self._ERRa[ii]) -
                                            _evaluatePotentials(
                                                self._pot, self._RL[ii], 0.)) -
                                           self._Lzs[ii]**2. /
                                           self._RL[ii]**2.),
                                self._Lzs[ii] / self._RL[ii],
                                0.,
                                0.,
                                _justjr=True,
                                **kwargs)[0]
                        except UnboundError:  #pragma: no cover
                            raise
                        if jj == 0:
                            jrERRa[ii] = jr[ii, jj]
        for ii in range(nLz):
            jr[ii, :] /= jrERRa[ii]
        #First interpolate Ez=Ezmax
        self._jr = jr
        self._jrERRaInterp = interpolate.InterpolatedUnivariateSpline(
            self._Lzs, numpy.log(jrERRa + 10.**-5.), k=3)
        self._jrInterp = interpolate.RectBivariateSpline(self._Lzs,
                                                         y,
                                                         jr,
                                                         kx=3,
                                                         ky=3,
                                                         s=0.)
        # Check the units
        self._check_consistent_units()
        return None
Пример #26
0
 def _actionsFreqsAngles(self, *args, **kwargs):
     """
     NAME:
        actionsFreqsAngles (_actionsFreqsAngles)
     PURPOSE:
        evaluate the actions, frequencies, and angles (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
     INPUT:
        Either:
           a) R,vR,vT,z,vz[,phi]:
              1) floats: phase-space value for single object (phi is optional) (each can be a Quantity)
              2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity)
           b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument 
        delta= (object-wide default) can be used to override the object-wide focal length; can also be an array with length N to allow different delta for different phase-space points
        u0= (None) if object-wide option useu0 is set, u0 to use (if useu0 and useu0 is None, a good value will be computed)
        c= (object-wide default, bool) True/False to override the object-wide setting for whether or not to use the C implementation
        order= (10) number of points to use in the Gauss-Legendre numerical integration of the relevant action, frequency, and angle integrals
        When not using C:
           fixed_quad= (False) if True, use Gaussian quadrature (scipy.integrate.fixed_quad instead of scipy.integrate.quad)
           scipy.integrate.fixed_quad or .quad keywords
     OUTPUT:
         (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
     HISTORY:
        2013-08-28 - Written - Bovy (IAS)
     """
     delta = kwargs.pop('delta', self._delta)
     order = kwargs.get('order', self._order)
     if ((self._c and not ('c' in kwargs and not kwargs['c']))\
             or (ext_loaded and (('c' in kwargs and kwargs['c'])))) \
             and _check_c(self._pot):
         if len(args) == 5:  #R,vR.vT, z, vz pragma: no cover
             raise IOError("Must specify phi")
         elif len(args) == 6:  #R,vR.vT, z, vz, phi
             R, vR, vT, z, vz, phi = args
         else:
             self._parse_eval_args(*args)
             R = self._eval_R
             vR = self._eval_vR
             vT = self._eval_vT
             z = self._eval_z
             vz = self._eval_vz
             phi = self._eval_phi
         if isinstance(R, float):
             R = nu.array([R])
             vR = nu.array([vR])
             vT = nu.array([vT])
             z = nu.array([z])
             vz = nu.array([vz])
             phi = nu.array([phi])
         Lz = R * vT
         if self._useu0:
             #First calculate u0
             if 'u0' in kwargs:
                 u0 = nu.asarray(kwargs['u0'])
             else:
                 E = nu.array([
                     _evaluatePotentials(self._pot, R[ii], z[ii]) +
                     vR[ii]**2. / 2. + vz[ii]**2. / 2. + vT[ii]**2. / 2.
                     for ii in range(len(R))
                 ])
                 u0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(\
                     E,Lz,self._pot,delta)[0]
             kwargs.pop('u0', None)
         else:
             u0 = None
         jr, jz, Omegar, Omegaphi, Omegaz, angler, anglephi,anglez, err= actionAngleStaeckel_c.actionAngleFreqAngleStaeckel_c(\
             self._pot,delta,R,vR,vT,z,vz,phi,u0=u0,order=order)
         # Adjustements for close-to-circular orbits
         indx = nu.isnan(Omegar) * (jr < 10.**-3.) + nu.isnan(Omegaz) * (
             jz < 10.**-3.
         )  #Close-to-circular and close-to-the-plane orbits
         if nu.sum(indx) > 0:
             Omegar[indx] = [
                 epifreq(self._pot, r, use_physical=False) for r in R[indx]
             ]
             Omegaphi[indx] = [
                 omegac(self._pot, r, use_physical=False) for r in R[indx]
             ]
             Omegaz[indx] = [
                 verticalfreq(self._pot, r, use_physical=False)
                 for r in R[indx]
             ]
         if err == 0:
             return (jr, Lz, jz, Omegar, Omegaphi, Omegaz, angler, anglephi,
                     anglez)
         else:
             raise RuntimeError(
                 "C-code for calculation actions failed; try with c=False"
             )  #pragma: no cover
     else:  #pragma: no cover
         if 'c' in kwargs and kwargs['c'] and not self._c:  #pragma: no cover
             warnings.warn(
                 "C module not used because potential does not have a C implementation",
                 galpyWarning)
         raise NotImplementedError(
             "actionsFreqs with c=False not implemented")