Пример #1
0
from astropy.coordinates import SkyCoord
from astropy import units as u
## Matplotlib modules
import matplotlib

matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import matplotlib.cm as cm
#debug = bool(int(sys.argv[2]))
#if debug:
#    import pdb; pdb.set_trace()

## Load the input/true WCS
input_imgname = '/disks/shear14/KiDS_simulations/Cosmos/Theli_image/KIDS_150p1_2p2_r_SDSS.V0.5.9A.swarp.cut.fits'
wcs_input = galsim.AstropyWCS(input_imgname)

## Load the input/truth catalogue
input_catname = '/disks/shear14/KiDS_simulations/Cosmos/KIDS_HST_cat/KiDS_Griffith_iMS1_handpicked_stars.cat'
input_catalogue = fits.open(input_catname)
input_data = input_catalogue[1].data
print "Loaded the input data"

## Obtain the cuts on the input/truth catalogue
MASK_all = input_data.MASK
mask = ~np.array(MASK_all & 0xfc3c, dtype=bool)
handpicked_stars = input_data['handpicked_stars']
rank = input_data['rank']
distance2d = input_data['distance2d']
assert handpicked_stars.dtype == bool
Пример #2
0
def test_withOrigin():
    from test_wcs import Cubic

    # First EuclideantWCS types:

    wcs_list = [
        galsim.OffsetWCS(0.3, galsim.PositionD(1, 1), galsim.PositionD(10,
                                                                       23)),
        galsim.OffsetShearWCS(0.23, galsim.Shear(g1=0.1, g2=0.3),
                              galsim.PositionD(12, 43)),
        galsim.AffineTransform(0.01, 0.26, -0.26, 0.02,
                               galsim.PositionD(12, 43)),
        galsim.UVFunction(ufunc=lambda x, y: 0.2 * x,
                          vfunc=lambda x, y: 0.2 * y),
        galsim.UVFunction(ufunc=lambda x, y: 0.2 * x,
                          vfunc=lambda x, y: 0.2 * y,
                          xfunc=lambda u, v: u / scale,
                          yfunc=lambda u, v: v / scale),
        galsim.UVFunction(ufunc='0.2*x + 0.03*y', vfunc='0.01*x + 0.2*y'),
    ]

    color = 0.3
    for wcs in wcs_list:
        # Original version of the shiftOrigin tests in do_nonlocal_wcs using deprecated name.
        new_origin = galsim.PositionI(123, 321)
        wcs3 = check_dep(wcs.withOrigin, new_origin)
        assert wcs != wcs3, name + ' is not != wcs.withOrigin(pos)'
        wcs4 = wcs.local(wcs.origin, color=color)
        assert wcs != wcs4, name + ' is not != wcs.local()'
        assert wcs4 != wcs, name + ' is not != wcs.local() (reverse)'
        world_origin = wcs.toWorld(wcs.origin, color=color)
        if wcs.isUniform():
            if wcs.world_origin == galsim.PositionD(0, 0):
                wcs2 = wcs.local(wcs.origin,
                                 color=color).withOrigin(wcs.origin)
                assert wcs == wcs2, name + ' is not equal after wcs.local().withOrigin(origin)'
            wcs2 = wcs.local(wcs.origin,
                             color=color).withOrigin(wcs.origin,
                                                     wcs.world_origin)
            assert wcs == wcs2, name + ' not equal after wcs.local().withOrigin(origin,world_origin)'
        world_pos1 = wcs.toWorld(galsim.PositionD(0, 0), color=color)
        wcs3 = check_dep(wcs.withOrigin, new_origin)
        world_pos2 = wcs3.toWorld(new_origin, color=color)
        np.testing.assert_almost_equal(
            world_pos2.x, world_pos1.x, 7,
            'withOrigin(new_origin) returned wrong world position')
        np.testing.assert_almost_equal(
            world_pos2.y, world_pos1.y, 7,
            'withOrigin(new_origin) returned wrong world position')
        new_world_origin = galsim.PositionD(5352.7, 9234.3)
        wcs5 = check_dep(wcs.withOrigin,
                         new_origin,
                         new_world_origin,
                         color=color)
        world_pos3 = wcs5.toWorld(new_origin, color=color)
        np.testing.assert_almost_equal(
            world_pos3.x, new_world_origin.x, 7,
            'withOrigin(new_origin, new_world_origin) returned wrong position')
        np.testing.assert_almost_equal(
            world_pos3.y, new_world_origin.y, 7,
            'withOrigin(new_origin, new_world_origin) returned wrong position')

    # Now some CelestialWCS types
    cubic_u = Cubic(2.9e-5, 2000., 'u')
    cubic_v = Cubic(-3.7e-5, 2000., 'v')
    center = galsim.CelestialCoord(23 * galsim.degrees, -13 * galsim.degrees)
    radec = lambda x, y: center.deproject_rad(
        cubic_u(x, y) * 0.2, cubic_v(x, y) * 0.2, projection='lambert')
    wcs_list = [
        galsim.RaDecFunction(radec),
        galsim.AstropyWCS('1904-66_TAN.fits', dir='fits_files'),
        galsim.GSFitsWCS('tpv.fits', dir='fits_files'),
        galsim.FitsWCS('sipsample.fits', dir='fits_files'),
    ]

    for wcs in wcs_list:
        # Original version of the shiftOrigin tests in do_celestial_wcs using deprecated name.
        new_origin = galsim.PositionI(123, 321)
        wcs3 = wcs.shiftOrigin(new_origin)
        assert wcs != wcs3, name + ' is not != wcs.shiftOrigin(pos)'
        wcs4 = wcs.local(wcs.origin)
        assert wcs != wcs4, name + ' is not != wcs.local()'
        assert wcs4 != wcs, name + ' is not != wcs.local() (reverse)'
        world_pos1 = wcs.toWorld(galsim.PositionD(0, 0))
        wcs3 = wcs.shiftOrigin(new_origin)
        world_pos2 = wcs3.toWorld(new_origin)
        np.testing.assert_almost_equal(
            world_pos2.distanceTo(world_pos1) / galsim.arcsec, 0, 7,
            'shiftOrigin(new_origin) returned wrong world position')
Пример #3
0
def check_consistency(randomKey, psfIDs=[0, 1, 2, 3, 4]):
    gRange = [
        'p400m000', 'm400m000', 'm000p400', 'm000m400', 'm283m283', 'p283m283',
        'm283p283', 'p283p283'
    ]

    ## Load the input/true WCS
    input_imgname = '/disks/shear14/KiDS_simulations/Cosmos/Theli_image/KIDS_150p1_2p2_r_SDSS.V0.5.9A.swarp.cut.fits'
    wcs_input = galsim.AstropyWCS(input_imgname)

    ## Load the input/truth catalogue
    input_catname = '/disks/shear14/KiDS_simulations/Cosmos/KIDS_HST_cat/KiDS_Griffith_iMS1_handpicked_stars.cat'
    input_catalogue = fits.open(input_catname)
    input_data = input_catalogue[1].data
    print "Loaded the input data"

    ## Obtain the cuts on the input/truth catalogue
    MASK_all = input_data.MASK
    mask = ~np.array(MASK_all & 0xfc3c, dtype=bool)
    handpicked_stars = input_data['handpicked_stars']
    rank = input_data['rank']
    distance2d = input_data['distance2d']
    assert handpicked_stars.dtype == bool

    cuts = mask & (rank >= 0) & (distance2d < 1) & (~handpicked_stars)

    OBJNO = input_data['OBJNO'][cuts]
    RA = input_data['RA'][cuts]
    DEC = input_data['DEC'][cuts]

    X, Y = [], []
    x_offset, y_offset = 2500, 2500
    ## Converting the sky position to image positions (takes about a minute)...
    ## This is needed because Xpos_THELI and Ypos_THELI aren't filled for the faint galaxies
    for gg in xrange(cuts.sum()):
        pos = wcs_input.posToImage(
            galsim.CelestialCoord(RA[gg] * galsim.degrees,
                                  DEC[gg] * galsim.degrees))
        x, y = pos.x - x_offset, pos.y - y_offset

        X.append(x)
        Y.append(y)

    X = np.array(X)
    Y = np.array(Y)
    ## "Building a kd-tree with {0} galaxies using their input positions...".format(cuts.sum())
    tree = cKDTree(np.vstack([X, Y]).T)

    for psfID in psfIDs:
        for g_id in xrange(len(gRange)):
            runID = gRange[g_id] + '_' + str(psfID) + '_' + randomKey
            print "Comparing ", runID
            #shearID, psfID, randomKey = runID.split('_')
            ARCHDIR = os.path.join(
                '/disks/shear15/KiDS/ImSim/pipeline/archive/', randomKey,
                runID)
            TMPDIR = os.path.join('/disks/shear15/KiDS/ImSim/temp', randomKey,
                                  runID)

            prior_catname = 'prior'
            prior_pathname = os.path.join(ARCHDIR, prior_catname)
            prior_dat = np.loadtxt(prior_pathname)

            sex_arrs, lf_arrs = [], []
            indices = []
            for rot_id in xrange(4):
                sex_catname = 'sexrot0{0}.cat'.format(rot_id)
                lf_catname = '0{0}.output.rot.fits.asc.scheme2b_corr'.format(
                    rot_id)
                if rot_id == 0:
                    sex_catname = 'sex.cat'
                #        lf_catname = 'output.fits.asc.scheme2b_corr'
                sex_pathname = os.path.join(TMPDIR, sex_catname)
                lf_pathname = os.path.join(ARCHDIR, lf_catname)

                sex_params_filename = 'kidssims.param'
                sex_params_pathname = os.path.join(
                    '/disks/shear15/KiDS/ImSim/pipeline/backup/pipeline/config/',
                    sex_params_filename)
                with open(sex_params_pathname, 'r') as f:
                    sex_fieldnames = f.readlines()
                ## Remove the empty lines
                n_emptylines = sex_fieldnames.count('\n')
                for ii in xrange(n_emptylines):
                    sex_fieldnames.remove('\n')
                ## Strip of the newline character from the rest
                for ii in xrange(len(sex_fieldnames)):
                    sex_fieldnames[ii] = sex_fieldnames[ii][:-1]

                lf_fieldnames = []
                with open(lf_pathname, 'r') as f:
                    for lineno in xrange(31):
                        line = f.readline()
                        words = line.split()
                        ## Omit the first line. It is not a column name
                        if lineno > 0:
                            ## Because somebody thought giving a space in between is legible
                            lf_fieldname = ' '.join(words[2:])
                            lf_fieldnames.append(lf_fieldname)

                sex_arr = np.loadtxt(sex_pathname)
                lf_arr = np.loadtxt(lf_pathname)

                assert len(sex_arr) == len(lf_arr)
                assert sex_arr.shape[1] == len(sex_fieldnames)
                assert lf_arr.shape[1] == len(lf_fieldnames)

                d2d, idx = tree.query(
                    np.array([
                        sex_arr[:, sex_fieldnames.index('X_IMAGE')],
                        sex_arr[:, sex_fieldnames.index('Y_IMAGE')]
                    ]).T)

                sex_arrs.append(sex_arr)
                lf_arrs.append(lf_arr)
                indices.append(idx)

            ## Assuming that the columns mean the same for all rotations, append them
            sex_dat = np.vstack(tuple(sex_arrs))
            lf_dat = np.vstack(tuple(lf_arrs))

            ## Make the QC directory, if it doesn't exist already
            QC_dirname = os.path.join(ARCHDIR, 'QC')
            if not 'QC' in os.listdir(ARCHDIR):
                os.mkdir(QC_dirname)

            ## Make the overall distributions

            ## Magnitude plots
            fig, ax = plt.subplots()
            bins = np.arange(16, 27, 0.05)
            prior_mag_col_id = 2
            _n, _bins, _patches = ax.hist(prior_dat[:, prior_mag_col_id],
                                          bins=bins,
                                          histtype='step',
                                          color='k',
                                          label='Input magnitude')
            _n, _bins, _patches = ax.hist(
                sex_dat[:, sex_fieldnames.index('MAG_AUTO')],
                bins=bins,
                histtype='step',
                weights=0.25 * np.ones(len(sex_dat)),
                color='r',
                label='Output magnitude')
            ax.set_yscale('log')
            _lgnd = ax.legend(loc='best')
            fig.suptitle('Magnitude distributions')
            fig_filename = 'magnitudes.png'
            fig_pathname = os.path.join(QC_dirname, fig_filename)
            fig.savefig(fig_pathname)

            #    ## SExtractor SNR plots
            #    fig, ax = plt.subplots()
            #    bins = np.logspace(-2,4,60)
            #    _n, _bins, _patches = ax.hist(input_data[cuts]['FLUX_AUTO_THELI']/input_data[cuts]['FLUXERR_AUTO_THELI'], bins=bins, histtype='step', color='k', label='SNR in data')
            #    _n, _bins, _patches = ax.hist(sex_dat[:,sex_fieldnames.index('FLUX_AUTO')]/sex_dat[:,sex_fieldnames.index('FLUXERR_AUTO')], bins=bins, histtype='step', weights=0.25*np.ones(len(sex_dat)), color='r', label='SNR in sims')
            #    ax.set_xscale('log')
            #    _lgnd = ax.legend(loc='best')
            #    fig.suptitle('SNR from SExtractor')
            #    fig_filename = 'snr.png'
            #    fig_pathname = os.path.join(QC_dirname,fig_filename)
            #    fig.savefig(fig_pathname)

            #    ## FWHM plots
            #    fig, ax = plt.subplots()
            #    bins = np.logspace(-2,2,20)
            #    _n, _bins, _patches = ax.hist(input_data[cuts]['FWHM_IMAGE_THELI'], bins=bins, histtype='step', color='k', label='FWHM_IMAGE in data')
            #    _n, _bins, _patches = ax.hist(sex_dat[:,sex_fieldnames.index('FWHM_IMAGE')], bins=bins, histtype='step', weights=0.25*np.ones(len(sex_dat)), color='r', label='FWHM_IMAGE in sims')
            #    ax.set_xscale('log')
            #    _lgnd = ax.legend(loc='best')
            #    fig.suptitle('FWHM_IMAGE from SExtractor')
            #    fig_filename = 'fwhm.png'
            #    fig_pathname = os.path.join(QC_dirname,fig_filename)
            #    fig.savefig(fig_pathname)

            ## Scalelength
            fig, ax = plt.subplots()
            bins = np.logspace(-2, 2, 20)
            _n, _bins, _patches = ax.hist(
                input_data[cuts]['bias_corrected_scalelength_pixels'],
                bins=bins,
                histtype='step',
                color='k',
                label='LF scalength in data')
            _n, _bins, _patches = ax.hist(
                lf_dat[:,
                       lf_fieldnames.index('bias-corrected scalelength /pixels'
                                           )],
                bins=bins,
                histtype='step',
                weights=0.25 * np.ones(len(lf_dat)),
                color='r',
                label='LF scalelength in sims')
            ax.set_xscale('log')
            _lgnd = ax.legend(loc='best')
            fig.suptitle('Scalelength from LF')
            fig_filename = 'scalelength.png'
            fig_pathname = os.path.join(QC_dirname, fig_filename)
            fig.savefig(fig_pathname)

            ## model SNR
            fig, ax = plt.subplots()
            bins = np.logspace(-2, 4, 60)
            _n, _bins, _patches = ax.hist(input_data[cuts]['model_SNratio'],
                                          bins=bins,
                                          histtype='step',
                                          color='k',
                                          label='Model SNR in data')
            _n, _bins, _patches = ax.hist(
                lf_dat[:, lf_fieldnames.index('model SNratio')],
                bins=bins,
                histtype='step',
                weights=[0.25] * len(lf_dat),
                color='r',
                label='Model SNR in sims')
            ax.set_xscale('log')
            _lgnd = ax.legend(loc='best')
            fig.suptitle('Model SNR from LF')
            fig_filename = 'snr_model.png'
            fig_pathname = os.path.join(QC_dirname, fig_filename)
            fig.savefig(fig_pathname)

            ## pixel SNR
            fig, ax = plt.subplots()
            bins = np.logspace(-2, 4, 60)
            _n, _bins, _patches = ax.hist(input_data[cuts]['pixel_SNratio'],
                                          bins=bins,
                                          histtype='step',
                                          color='k',
                                          label='Pixel SNR in data')
            _n, _bins, _patches = ax.hist(
                lf_dat[:, lf_fieldnames.index('pixel SNratio')],
                bins=bins,
                histtype='step',
                weights=[0.25] * len(lf_dat),
                color='r',
                label='Pixel SNR in sims')
            ax.set_xscale('log')
            _lgnd = ax.legend(loc='best')
            fig.suptitle('Pixel SNR from LF')
            fig_filename = 'snr_pixel.png'
            fig_pathname = os.path.join(QC_dirname, fig_filename)
            fig.savefig(fig_pathname)

            plt.close('all')