Пример #1
0
def test_ne():
    """Test base.py GSObjects for not-equals."""
    # Define some universal gsps
    gsp = galsim.GSParams(maxk_threshold=1.1e-3, folding_threshold=5.1e-3)

    # Pixel.  Params include scale, flux, gsparams.
    # gsparams.
    # The following should all test unequal:
    gals = [galsim.Pixel(scale=1.0),
            galsim.Pixel(scale=1.1),
            galsim.Pixel(scale=1.0, flux=1.1),
            galsim.Pixel(scale=1.0, gsparams=gsp)]
    all_obj_diff(gals)

    # Box.  Params include width, height, flux, gsparams.
    # gsparams.
    # The following should all test unequal:
    gals = [galsim.Box(width=1.0, height=1.0),
            galsim.Box(width=1.1, height=1.0),
            galsim.Box(width=1.0, height=1.1),
            galsim.Box(width=1.0, height=1.0, flux=1.1),
            galsim.Box(width=1.0, height=1.0, gsparams=gsp)]
    all_obj_diff(gals)

    # TopHat.  Params include radius, flux, gsparams.
    # gsparams.
    # The following should all test unequal:
    gals = [galsim.TopHat(radius=1.0),
            galsim.TopHat(radius=1.1),
            galsim.TopHat(radius=1.0, flux=1.1),
            galsim.TopHat(radius=1.0, gsparams=gsp)]
    all_obj_diff(gals)
Пример #2
0
def test_box_shoot():
    """Test Box with photon shooting.  Particularly the flux of the final image.
    """
    rng = galsim.BaseDeviate(1234)
    obj = galsim.Box(width=1.3, height=2.4, flux=1.e4)
    im = galsim.Image(100,100, scale=1)
    im.setCenter(0,0)
    added_flux, photons = obj.drawPhot(im, poisson_flux=False, rng=rng)
    print('obj.flux = ',obj.flux)
    print('added_flux = ',added_flux)
    print('photon fluxes = ',photons.flux.min(),'..',photons.flux.max())
    print('image flux = ',im.array.sum())
    assert np.isclose(added_flux, obj.flux)
    assert np.isclose(im.array.sum(), obj.flux)

    obj = galsim.Pixel(scale=9.3, flux=1.e4)
    added_flux, photons = obj.drawPhot(im, poisson_flux=False, rng=rng)
    print('obj.flux = ',obj.flux)
    print('added_flux = ',added_flux)
    print('photon fluxes = ',photons.flux.min(),'..',photons.flux.max())
    print('image flux = ',im.array.sum())
    assert np.isclose(added_flux, obj.flux)
    assert np.isclose(im.array.sum(), obj.flux)

    obj = galsim.TopHat(radius=4.7, flux=1.e4)
    added_flux, photons = obj.drawPhot(im, poisson_flux=False, rng=rng)
    print('obj.flux = ',obj.flux)
    print('added_flux = ',added_flux)
    print('photon fluxes = ',photons.flux.min(),'..',photons.flux.max())
    print('image flux = ',im.array.sum())
    assert np.isclose(added_flux, obj.flux)
    assert np.isclose(im.array.sum(), obj.flux)
Пример #3
0
def test_flip():
    """Test several ways to flip a profile
    """
    # The Shapelet profile has the advantage of being fast and not circularly symmetric, so
    # it is a good test of the actual code for doing the flips (in SBTransform).
    # But since the bug Rachel reported in #645 was actually in SBInterpolatedImage
    # (one calculation implicitly assumed dx > 0), it seems worthwhile to run through all the
    # classes to make sure we hit everything with negative steps for dx and dy.
    prof_list = [
        galsim.Shapelet(sigma=0.17, order=2,
                        bvec=[1.7, 0.01,0.03, 0.29, 0.33, -0.18]),
    ]
    if __name__ == "__main__":
        image_dir = './real_comparison_images'
        catalog_file = 'test_catalog.fits'
        rgc = galsim.RealGalaxyCatalog(catalog_file, dir=image_dir)
        # Some of these are slow, so only do the Shapelet test as part of the normal unit tests.
        prof_list += [
            galsim.Airy(lam_over_diam=0.17, flux=1.7),
            galsim.Airy(lam_over_diam=0.17, obscuration=0.2, flux=1.7),
            # Box gets rendered with real-space convolution.  The default accuracy isn't quite
            # enough to get the flip to match at 6 decimal places.
            galsim.Box(0.17, 0.23, flux=1.7,
                       gsparams=galsim.GSParams(realspace_relerr=1.e-6)),
            # Without being convolved by anything with a reasonable k cutoff, this needs
            # a very large fft.
            galsim.DeVaucouleurs(half_light_radius=0.17, flux=1.7),
            # I don't really understand why this needs a lower maxk_threshold to work, but
            # without it, the k-space tests fail.
            galsim.Exponential(scale_radius=0.17, flux=1.7,
                               gsparams=galsim.GSParams(maxk_threshold=1.e-4)),
            galsim.Gaussian(sigma=0.17, flux=1.7),
            galsim.Kolmogorov(fwhm=0.17, flux=1.7),
            galsim.Moffat(beta=2.5, fwhm=0.17, flux=1.7),
            galsim.Moffat(beta=2.5, fwhm=0.17, flux=1.7, trunc=0.82),
            galsim.OpticalPSF(lam_over_diam=0.17, obscuration=0.2, nstruts=6,
                              coma1=0.2, coma2=0.5, defocus=-0.1, flux=1.7),
            # Like with Box, we need to increase the real-space convolution accuracy.
            # This time lowering both relerr and abserr.
            galsim.Pixel(0.23, flux=1.7,
                         gsparams=galsim.GSParams(realspace_relerr=1.e-6,
                                                  realspace_abserr=1.e-8)),
            # Note: RealGalaxy should not be rendered directly because of the deconvolution.
            # Here we convolve it by a Gaussian that is slightly larger than the original PSF.
            galsim.Convolve([ galsim.RealGalaxy(rgc, index=0, flux=1.7),  # "Real" RealGalaxy
                              galsim.Gaussian(sigma=0.08) ]),
            galsim.Convolve([ galsim.RealGalaxy(rgc, index=1, flux=1.7),  # "Fake" RealGalaxy
                              galsim.Gaussian(sigma=0.08) ]),             # (cf. test_real.py)
            galsim.Spergel(nu=-0.19, half_light_radius=0.17, flux=1.7),
            galsim.Spergel(nu=0., half_light_radius=0.17, flux=1.7),
            galsim.Spergel(nu=0.8, half_light_radius=0.17, flux=1.7),
            galsim.Sersic(n=2.3, half_light_radius=0.17, flux=1.7),
            galsim.Sersic(n=2.3, half_light_radius=0.17, flux=1.7, trunc=0.82),
            # The shifts here caught a bug in how SBTransform handled the recentering.
            # Two of the shifts (0.125 and 0.375) lead back to 0.0 happening on an integer
            # index, which now works correctly.
            galsim.Sum([ galsim.Gaussian(sigma=0.17, flux=1.7).shift(-0.2,0.125),
                         galsim.Exponential(scale_radius=0.23, flux=3.1).shift(0.375,0.23)]),
            galsim.TopHat(0.23, flux=1.7),
            # Box and Pixel use real-space convolution.  Convolve with a Gaussian to get fft.
            galsim.Convolve([ galsim.Box(0.17, 0.23, flux=1.7).shift(-0.2,0.1),
                              galsim.Gaussian(sigma=0.09) ]),
            galsim.Convolve([ galsim.TopHat(0.17, flux=1.7).shift(-0.275,0.125),
                              galsim.Gaussian(sigma=0.09) ]),
            # Test something really crazy with several layers worth of transformations
            galsim.Convolve([
                galsim.Sum([
                    galsim.Gaussian(sigma=0.17, flux=1.7).shear(g1=0.1,g2=0.2).shift(2,3),
                    galsim.Kolmogorov(fwhm=0.33, flux=3.9).transform(0.31,0.19,-0.23,0.33) * 88.,
                    galsim.Box(0.11, 0.44, flux=4).rotate(33 * galsim.degrees) / 1.9
                ]).shift(-0.3,1),
                galsim.AutoConvolve(galsim.TopHat(0.5).shear(g1=0.3,g2=0)).rotate(3*galsim.degrees),
                (galsim.AutoCorrelate(galsim.Box(0.2, 0.3)) * 11).shift(3,2).shift(2,-3) * 0.31
            ]).shift(0,0).transform(0,-1,-1,0).shift(-1,1)
        ]

    s = galsim.Shear(g1=0.11, g2=-0.21)
    s1 = galsim.Shear(g1=0.11, g2=0.21)  # Appropriate for the flips around x and y axes
    s2 = galsim.Shear(g1=-0.11, g2=-0.21)  # Appropriate for the flip around x=y

    # Also use shears with just a g1 to get dx != dy, but dxy, dyx = 0.
    q = galsim.Shear(g1=0.11, g2=0.)
    q1 = galsim.Shear(g1=0.11, g2=0.)  # Appropriate for the flips around x and y axes
    q2 = galsim.Shear(g1=-0.11, g2=0.)  # Appropriate for the flip around x=y

    decimal=6  # Oddly, these aren't as precise as I would have expected.
               # Even when we only go to this many digits of accuracy, the Exponential needed
               # a lower than default value for maxk_threshold.
    im = galsim.ImageD(16,16, scale=0.05)

    for prof in prof_list:
        print('prof = ',prof)

        # Not all profiles are expected to have a max_sb value close to the maximum pixel value,
        # so mark the ones where we don't want to require this to be true.
        close_maxsb = True
        name = str(prof)
        if ('DeVauc' in name or 'Sersic' in name or 'Spergel' in name or
            'Optical' in name or 'shift' in name):
            close_maxsb = False

        # Make sure we hit all 4 fill functions.
        # image_x uses fillXValue with izero, jzero
        # image_x1 uses fillXValue with izero, jzero, and unequal dx,dy
        # image_x2 uses fillXValue with dxy, dyx
        # image_k uses fillKValue with izero, jzero
        # image_k1 uses fillKValue with izero, jzero, and unequal dx,dy
        # image_k2 uses fillKValue with dxy, dyx
        image_x = prof.drawImage(image=im.copy(), method='no_pixel')
        image_x1 = prof.shear(q).drawImage(image=im.copy(), method='no_pixel')
        image_x2 = prof.shear(s).drawImage(image=im.copy(), method='no_pixel')
        image_k = prof.drawImage(image=im.copy())
        image_k1 = prof.shear(q).drawImage(image=im.copy())
        image_k2 = prof.shear(s).drawImage(image=im.copy())

        if close_maxsb:
            np.testing.assert_allclose(
                    image_x.array.max(), prof.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image_x1.array.max(), prof.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image_x2.array.max(), prof.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        # Flip around y axis (i.e. x -> -x)
        flip1 = prof.transform(-1, 0, 0, 1)
        image2_x = flip1.drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x.array, image2_x.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed x test")
        image2_x1 = flip1.shear(q1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x1.array, image2_x1.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed x1 test")
        image2_x2 = flip1.shear(s1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x2.array, image2_x2.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed x2 test")
        image2_k = flip1.drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k.array, image2_k.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed k test")
        image2_k1 = flip1.shear(q1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k1.array, image2_k1.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed k1 test")
        image2_k2 = flip1.shear(s1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k2.array, image2_k2.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed k2 test")

        if close_maxsb:
            np.testing.assert_allclose(
                    image2_x.array.max(), flip1.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x1.array.max(), flip1.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x2.array.max(), flip1.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        # Flip around x axis (i.e. y -> -y)
        flip2 = prof.transform(1, 0, 0, -1)
        image2_x = flip2.drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x.array, image2_x.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed x test")
        image2_x1 = flip2.shear(q1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x1.array, image2_x1.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed x1 test")
        image2_x2 = flip2.shear(s1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x2.array, image2_x2.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed x2 test")
        image2_k = flip2.drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k.array, image2_k.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed k test")
        image2_k1 = flip2.shear(q1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k1.array, image2_k1.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed k1 test")
        image2_k2 = flip2.shear(s1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k2.array, image2_k2.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed k2 test")

        if close_maxsb:
            np.testing.assert_allclose(
                    image2_x.array.max(), flip2.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x1.array.max(), flip2.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x2.array.max(), flip2.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        # Flip around x=y (i.e. y -> x, x -> y)
        flip3 = prof.transform(0, 1, 1, 0)
        image2_x = flip3.drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x.array, np.transpose(image2_x.array), decimal=decimal,
            err_msg="Flipping image around x=y failed x test")
        image2_x1 = flip3.shear(q2).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x1.array, np.transpose(image2_x1.array), decimal=decimal,
            err_msg="Flipping image around x=y failed x1 test")
        image2_x2 = flip3.shear(s2).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x2.array, np.transpose(image2_x2.array), decimal=decimal,
            err_msg="Flipping image around x=y failed x2 test")
        image2_k = flip3.drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k.array, np.transpose(image2_k.array), decimal=decimal,
            err_msg="Flipping image around x=y failed k test")
        image2_k1 = flip3.shear(q2).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k1.array, np.transpose(image2_k1.array), decimal=decimal,
            err_msg="Flipping image around x=y failed k1 test")
        image2_k2 = flip3.shear(s2).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k2.array, np.transpose(image2_k2.array), decimal=decimal,
            err_msg="Flipping image around x=y failed k2 test")

        if close_maxsb:
            np.testing.assert_allclose(
                    image2_x.array.max(), flip3.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x1.array.max(), flip3.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x2.array.max(), flip3.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        do_pickle(prof, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(flip1, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(flip2, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(flip3, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(prof)
        do_pickle(flip1)
        do_pickle(flip2)
        do_pickle(flip3)
Пример #4
0
def test_tophat():
    """Test the generation of a specific tophat profile against a known result.
    """
    savedImg = galsim.fits.read(os.path.join(imgdir, "tophat_101.fits"))
    myImg = galsim.ImageF(savedImg.bounds, scale=0.2)
    myImg.setCenter(0,0)
    test_flux = 1.8

    # There are numerical issues with using radius = 1, since many points are right on the edge
    # of the circle.  e.g. (+-1,0), (0,+-1), (+-0.6,+-0.8), (+-0.8,+-0.6).  And in practice, some
    # of these end up getting drawn and not others, which means it's not a good choice for a unit
    # test since it wouldn't be any less correct for a different subset of these points to be
    # drawn. Using r = 1.01 solves this problem and makes the result symmetric.
    tophat = galsim.TopHat(radius=1.01, flux=1)
    tophat.drawImage(myImg, method="sb", use_true_center=False)
    np.testing.assert_array_almost_equal(
            myImg.array, savedImg.array, 5,
            err_msg="Using GSObject TopHat disagrees with expected result")
    np.testing.assert_array_equal(
            tophat.radius, 1.01,
            err_msg="TopHat radius returned wrong value")

    # Check with default_params
    tophat = galsim.TopHat(radius=1.01, flux=1, gsparams=default_params)
    tophat.drawImage(myImg, method="sb", use_true_center=False)
    np.testing.assert_array_almost_equal(
            myImg.array, savedImg.array, 5,
            err_msg="Using GSObject TopHat with default_params disagrees with expected result")
    tophat = galsim.TopHat(radius=1.01, flux=1, gsparams=galsim.GSParams())
    tophat.drawImage(myImg, method="sb", use_true_center=False)
    np.testing.assert_array_almost_equal(
            myImg.array, savedImg.array, 5,
            err_msg="Using GSObject TopHat with GSParams() disagrees with expected result")

    # Use non-unity values.
    tophat = galsim.TopHat(flux=1.7, radius=2.3)

    # Test photon shooting.
    do_shoot(tophat,myImg,"TopHat")

    # Test shoot and kvalue
    scale = 0.2939
    im = galsim.ImageF(16,16, scale=scale)
    # The choices of radius here are fairly specific.  If the edge of the circle comes too close
    # to the center of one of the pixels, then the test will fail, since the Fourier draw method
    # will blur the edge a bit and give some flux to that pixel.
    for radius in [ 1.2, 0.93, 2.11 ]:
        tophat = galsim.TopHat(radius=radius, flux=test_flux)
        check_basic(tophat, "TopHat with radius = %f"%radius)
        do_shoot(tophat,im,"TopHat with radius = %f"%radius)
        do_kvalue(tophat,im,"TopHat with radius = %f"%radius)

        # This is also a profile that may be convolved using real space convolution, so test that.
        conv = galsim.Convolve(tophat, galsim.Pixel(scale=scale), real_space=True)
        check_basic(conv, "TopHat convolved with pixel in real space",
                    approx_maxsb=True, scale=0.2)
        do_kvalue(conv,im, "TopHat convolved with pixel in real space")

        cen = galsim.PositionD(0, 0)
        np.testing.assert_equal(tophat.centroid, cen)
        np.testing.assert_almost_equal(tophat.kValue(cen), (1+0j) * test_flux)
        np.testing.assert_almost_equal(tophat.flux, test_flux)
        np.testing.assert_almost_equal(tophat.xValue(cen), tophat.max_sb)
        np.testing.assert_almost_equal(tophat.xValue(radius-0.001, 0.), tophat.max_sb)
        np.testing.assert_almost_equal(tophat.xValue(0., radius-0.001), tophat.max_sb)
        np.testing.assert_almost_equal(tophat.xValue(radius+0.001, 0.), 0.)
        np.testing.assert_almost_equal(tophat.xValue(0., radius+0.001), 0.)

    # Check picklability
    do_pickle(tophat, lambda x: x.drawImage(method='no_pixel'))
    do_pickle(tophat)
    do_pickle(galsim.TopHat(1))

    # Check sheared tophat the same way
    tophat = galsim.TopHat(radius=1.2, flux=test_flux)
    # Again, the test is very sensitive to the choice of shear here.  Most values fail because
    # some pixel center gets too close to the resulting ellipse for the fourier draw to match
    # the real-space draw at the required accuracy.
    tophat = tophat.shear(galsim.Shear(g1=0.15, g2=-0.33))
    check_basic(tophat, "Sheared TopHat")
    do_shoot(tophat,im, "Sheared TopHat")
    do_kvalue(tophat,im, "Sheared TopHat")
    cen = galsim.PositionD(0, 0)
    np.testing.assert_equal(tophat.centroid, cen)
    np.testing.assert_almost_equal(tophat.kValue(cen), (1+0j) * test_flux)
    np.testing.assert_almost_equal(tophat.flux, test_flux)
    np.testing.assert_almost_equal(tophat.xValue(cen), tophat.max_sb)

    # Check picklability
    do_pickle(tophat, lambda x: x.drawImage(method='no_pixel'))
    do_pickle(tophat)

    # Check real-space convolution of the sheared tophat.
    conv = galsim.Convolve(tophat, galsim.Pixel(scale=scale), real_space=True)
    check_basic(conv, "Sheared TopHat convolved with pixel in real space",
                approx_maxsb=True, scale=0.2)
    do_kvalue(conv,im, "Sheared TopHat convolved with pixel in real space")