Пример #1
0
def train_gama(X_train, X_test, y_train, y_test, mtype, common_name_model,
               problemtype, classes, default_featurenames, transform_model,
               settings, model_session):

    model_name = common_name_model + '.pickle'
    files = list()

    if mtype in ['c']:

        automl = GamaClassifier(max_total_time=180, keep_analysis_log=None)
        print(
            "Starting GAMA `fit` - usually takes around 3 minutes but can take longer for large datasets"
        )
        automl.fit(X_train, y_train)

        label_predictions = automl.predict(X_test)
        probability_predictions = automl.predict_proba(X_test)

        accuracy = accuracy_score(y_test, label_predictions)
        log_loss_pred = log_loss(y_test, probability_predictions)
        log_loss_score = automl.score(X_test, y_test)

        print('accuracy:', accuracy)
        print('log loss pred:', log_loss_pred)
        print('log_loss_score', log_loss_score)

    elif mtype in ['regression', 'r']:

        automl = GamaRegressor(max_total_time=180,
                               keep_analysis_log=None,
                               n_jobs=1)
        print(
            "Starting GAMA `fit` - usually takes around 3 minutes but can take longer for large datasets"
        )
        automl.fit(X_train, y_train)

        predictions = automl.predict(X_test)
        mse_error = mean_squared_error(y_test, predictions)
        print("MSE:", mse_error)

    # SAVE ML MODEL
    modelfile = open(model_name, 'wb')
    pickle.dump(automl, modelfile)
    modelfile.close()

    files.append(model_name)
    model_dir = os.getcwd()

    return model_name, model_dir, files
Пример #2
0
def gama_runs(datasets, path, task):
    ''' Executes Gama optimization for different OpenML datasets and stores the
    log files in a specified path.

    Parameters:
    -----------
    datasets: list
        Contains datasets that are going to be optimized using Gama.
    path: string
        Contains the path to the directory in where the files are logged.
    task: string
        Contains learning task to specify the GAMA optimization (either classi-
        fication or regression).

    Returns:
    --------
    string
        Contains a confirmation that the optimization process has finished.
    '''
    executed = executed_datasets(path)
    for dataset_id in datasets:
        if dataset_id not in executed:
            try:
                ds = oml.datasets.get_dataset(dataset_id, download_data=False)
                X, y, categorical_indicator, attribute_names = ds.get_data(
                    dataset_format='DataFrame',
                    target=ds.default_target_attribute)

                categorical, numeric, string = category_numeric_or_string(
                    X, categorical_indicator)
                X, y = impute(X, y, categorical, numeric, string, "median")

                for k in [1, 2, 5, 10, 25]:
                    log_k = ''
                    if k == 1:
                        log_k = 'a'
                    elif k == 2:
                        log_k = 'b'
                    elif k == 5:
                        log_k = 'c'
                    elif k == 10:
                        log_k = 'd'
                    else:
                        log_k = 'e'

                    X_adj, y_adj = onehot_or_targ(X, y, categorical, k)
                    if task.lower() == "classification":
                        gama = GamaClassifier(
                            n_jobs=-1,
                            max_total_time=600,
                            scoring='accuracy',
                            keep_analysis_log='{}{}{}.log'.format(
                                path, log_k, dataset_id))
                    elif task.lower() == "regression":
                        gama = GamaRegressor(
                            n_jobs=-1,
                            max_total_time=600,
                            scoring='r2',
                            keep_analysis_log='{}{}{}.log'.format(
                                path, log_k, dataset_id))
                    else:
                        return "Please select classification or regression as learning task!"
                    gama.fit(X_adj, y_adj)
            except:
                pass

    return "Gama has finished running optimization."
Пример #3
0
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss, accuracy_score
from gama import GamaClassifier

if __name__ == '__main__':
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        stratify=y,
                                                        random_state=0)

    automl = GamaClassifier(max_total_time=180,
                            keep_analysis_log=None,
                            n_jobs=1)
    print("Starting `fit` which will take roughly 3 minutes.")
    automl.fit(X_train, y_train)

    label_predictions = automl.predict(X_test)
    probability_predictions = automl.predict_proba(X_test)

    print('accuracy:', accuracy_score(y_test, label_predictions))
    print('log loss:', log_loss(y_test, probability_predictions))
Пример #4
0
def _test_dataset_problem(
    data,
    metric: str,
    arff: bool = False,
    y_type: Type = pd.DataFrame,
    search: BaseSearch = AsyncEA(),
    missing_values: bool = False,
    max_time: int = 60,
):
    """

    :param data:
    :param metric:
    :param arff:
    :param y_type: pd.DataFrame, pd.Series, np.ndarray or str
    :return:
    """
    gama = GamaClassifier(
        random_state=0,
        max_total_time=max_time,
        scoring=metric,
        search=search,
        n_jobs=1,
        post_processing=EnsemblePostProcessing(ensemble_size=5),
        store="nothing",
    )
    if arff:
        train_path = f"tests/data/{data['name']}_train.arff"
        test_path = f"tests/data/{data['name']}_test.arff"

        X, y = data["load"](return_X_y=True)
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            stratify=y,
                                                            random_state=0)
        y_test = [str(val) for val in y_test]

        with Stopwatch() as sw:
            gama.fit_from_file(train_path, target_column=data["target"])
        class_predictions = gama.predict_from_file(
            test_path, target_column=data["target"])
        class_probabilities = gama.predict_proba_from_file(
            test_path, target_column=data["target"])
        gama_score = gama.score_from_file(test_path)
    else:
        X, y = data["load"](return_X_y=True)
        if y_type == str:
            databunch = data["load"]()
            y = np.asarray(
                [databunch.target_names[c_i] for c_i in databunch.target])
        if y_type in [pd.Series, pd.DataFrame]:
            y = y_type(y)

        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            stratify=y,
                                                            random_state=0)
        if missing_values:
            X_train[1:300:2, 0] = X_train[2:300:5, 1] = float("NaN")
            X_test[1:100:2, 0] = X_test[2:100:5, 1] = float("NaN")

        with Stopwatch() as sw:
            gama.fit(X_train, y_train)
        class_predictions = gama.predict(X_test)
        class_probabilities = gama.predict_proba(X_test)
        gama_score = gama.score(X_test, y_test)

    assert (60 * FIT_TIME_MARGIN >
            sw.elapsed_time), "fit must stay within 110% of allotted time."

    assert isinstance(class_predictions,
                      np.ndarray), "predictions should be numpy arrays."
    assert (
        data["test_size"],
    ) == class_predictions.shape, "predict should return (N,) shaped array."

    accuracy = accuracy_score(y_test, class_predictions)
    # Majority classifier on this split achieves 0.6293706293706294
    print(data["name"], metric, "accuracy:", accuracy)
    assert (data["base_accuracy"] <= accuracy
            ), "predictions should be at least as good as majority class."

    assert isinstance(
        class_probabilities,
        np.ndarray), "probability predictions should be numpy arrays."
    assert (data["test_size"],
            data["n_classes"]) == class_probabilities.shape, (
                "predict_proba should return"
                " (N,K) shaped array.")

    # Majority classifier on this split achieves 12.80138131184662
    logloss = log_loss(y_test, class_probabilities)
    print(data["name"], metric, "log-loss:", logloss)
    assert (data["base_log_loss"] >= logloss
            ), "predictions should be at least as good as majority class."

    score_to_match = logloss if metric == "neg_log_loss" else accuracy
    assert score_to_match == pytest.approx(gama_score)
    gama.cleanup("all")
    return gama
Пример #5
0
# In[6]:

#Initialization

cls = GamaClassifier(max_total_time=3600,
                     keep_analysis_log=None,
                     n_jobs=1,
                     scoring='accuracy',
                     post_processing_method=EnsemblePostProcessing())

X = B[0].iloc[:, 0:-1]
y = B[0].iloc[:, -1]

print("Starting `fit`")
cls.fit(X, y)

anytime_model = cls

#Prequential evaluation

for i in range(1, n):

    #Test on next batch for accuracy
    X = B[i].iloc[:, 0:-1]
    y = B[i].iloc[:, -1]
    y_hat = cls.predict(X)
    accuracy = sklearn.metrics.accuracy_score(y, y_hat)
    print("Test batch %d - Test score %f\n" % (i, accuracy))

# In[ ]:
Пример #6
0
#Initialization

cls = GamaClassifier(max_total_time=3600,
                     keep_analysis_log=None,
                     n_jobs=1,
                     scoring='log_loss',
                     post_processing_method=EnsemblePostProcessing())
#drift_detector = ADWIN()
drift_detector = EDDM()

start = 1
X_train = B[start - 1].iloc[:, 0:-1]
y_train = B[start - 1].iloc[:, -1]

print("Starting to `fit`")
cls.fit(X_train, y_train, warm_start=True)

anytime_model = cls

#Prequential evaluation

for i in range(start, n):

    #Test on next batch for accuracy
    X_test = B[i].iloc[:, 0:-1]
    y_test = B[i].iloc[:, -1]
    y_hat = cls.predict(X_test)

    b_acc = sklearn.metrics.balanced_accuracy_score(
        y_test, y_hat)  #equivalent to ROC_AUC in binary case
    acc = sklearn.metrics.accuracy_score(y_test, y_hat)
Пример #7
0
cls = GamaClassifier(max_total_time=3600,
                     keep_analysis_log=None,
                     n_jobs=1,
                     scoring='log_loss',
                     post_processing_method=EnsemblePostProcessing(),
                     config=limited_config)

drift_detector = EDDM()

start = 1
X_train = B[start - 1].iloc[:, 0:-1]
y_train = B[start - 1].iloc[:, -1]

print("Starting to `fit`")
cls.fit(X_train, y_train)

anytime_model = cls

#Prequential evaluation

for i in range(start, n):

    #Test on next batch for accuracy
    X_test = B[i].iloc[:, 0:-1]
    y_test = B[i].iloc[:, -1]
    y_hat = cls.predict(X_test)

    b_acc = sklearn.metrics.balanced_accuracy_score(
        y_test, y_hat)  #equivalent to ROC_AUC in binary case
    acc = sklearn.metrics.accuracy_score(y_test, y_hat)
Пример #8
0
def _test_dataset_problem(data,
                          metric: str,
                          arff: bool = False,
                          y_type: Type = pd.DataFrame,
                          search: BaseSearch = AsyncEA(),
                          missing_values: bool = False,
                          max_time: int = 60):
    """

    :param data:
    :param metric:
    :param arff:
    :param y_type: pd.DataFrame, pd.Series, np.ndarray or str
    :return:
    """
    gama = GamaClassifier(
        random_state=0,
        max_total_time=max_time,
        scoring=metric,
        search_method=search,
        n_jobs=1,
        post_processing_method=EnsemblePostProcessing(ensemble_size=5))
    if arff:
        train_path = 'tests/data/{}_train.arff'.format(data['name'])
        test_path = 'tests/data/{}_test.arff'.format(data['name'])

        X, y = data['load'](return_X_y=True)
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            stratify=y,
                                                            random_state=0)
        y_test = [str(val) for val in y_test]

        with Stopwatch() as sw:
            gama.fit_arff(train_path, target_column=data['target'])
        class_predictions = gama.predict_arff(test_path,
                                              target_column=data['target'])
        class_probabilities = gama.predict_proba_arff(
            test_path, target_column=data['target'])
        gama_score = gama.score_arff(test_path)
    else:
        X, y = data['load'](return_X_y=True)
        if y_type == str:
            databunch = data['load']()
            y = np.asarray(
                [databunch.target_names[c_i] for c_i in databunch.target])
        if y_type in [pd.Series, pd.DataFrame]:
            y = y_type(y)

        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            stratify=y,
                                                            random_state=0)
        if missing_values:
            X_train[1:300:2, 0] = X_train[2:300:5, 1] = float("NaN")
            X_test[1:100:2, 0] = X_test[2:100:5, 1] = float("NaN")

        with Stopwatch() as sw:
            gama.fit(X_train, y_train)
        class_predictions = gama.predict(X_test)
        class_probabilities = gama.predict_proba(X_test)
        gama_score = gama.score(X_test, y_test)

    assert 60 * FIT_TIME_MARGIN > sw.elapsed_time, 'fit must stay within 110% of allotted time.'

    assert isinstance(class_predictions,
                      np.ndarray), 'predictions should be numpy arrays.'
    assert (
        data['test_size'],
    ) == class_predictions.shape, 'predict should return (N,) shaped array.'

    accuracy = accuracy_score(y_test, class_predictions)
    # Majority classifier on this split achieves 0.6293706293706294
    print(data['name'], metric, 'accuracy:', accuracy)
    assert data[
        'base_accuracy'] <= accuracy, 'predictions should be at least as good as majority class.'

    assert isinstance(
        class_probabilities,
        np.ndarray), 'probability predictions should be numpy arrays.'
    assert (data['test_size'],
            data['n_classes']) == class_probabilities.shape, (
                'predict_proba should return'
                ' (N,K) shaped array.')

    # Majority classifier on this split achieves 12.80138131184662
    logloss = log_loss(y_test, class_probabilities)
    print(data['name'], metric, 'log-loss:', logloss)
    assert data[
        'base_log_loss'] >= logloss, 'predictions should be at least as good as majority class.'

    score_to_match = logloss if metric == 'log_loss' else accuracy
    assert score_to_match == pytest.approx(gama_score)