class EditMnnCnn(EditingAlgorithm): """**edit_mnn_cnn** (kNNInteractive *classifier*, int *k* = 0, bool *protectRare*, int *rareThreshold*, bool *randomize*) Combined execution of Wilson's Modified Nearest Neighbour and Hart's Condensed Nearest Neighbour. Combining the algorithms in this order is recommended, because first bad samples are removed to improve the classifiers accuracy, and then the remaining samples are condensed to speed up the classifier For documentation of the parameters see the independent algorithms""" name = "MNN, then CNN" args = Args([ Int("Internal k", default=0), Check("Protect rare classes", default=True), Int("Rare class threshold", default=3), Check("Randomize", default=True) ]) def __call__(self, classifier, k=0, protectRare=True, rareThreshold=3, randomize=True): return edit_cnn(edit_mnn(classifier, k, protectRare, rareThreshold), randomize)
class staffheight_estimation(PluginFunction): """ Returns the staffline height of music score. *staff_win* width of each vertical strip. Local projection is done within each strip. *staffspace_threshold1*, *staffspace_threshold2* staffspace_threshold1 is the minimum height of staffline height. If the estimation is underneath this threshold, chose the next peak whose staffspace is over staffspace_threshold2 """ return_type = Int("output") self_type = ImageType([ONEBIT]) args = Args([ Int("staff_win", default=30), Int("staffspace_threshold1", default=5), Int("staffspace_threshold2", default=10) ]) def __call__(self, staff_win=30, staffspace_threshold1=5, staffspace_threshold2=10): return _staff_removal.staffheight_estimation(self, staff_win, staffspace_threshold1, staffspace_threshold2) __call__ = staticmethod(__call__)
class boundary_reconstruct(PluginFunction): """ Reconstructs boundary of music score based on edge map from edg_detection. *terminate_time1* maximum numbers of iterations in 1st round. *terminate_time2* maximum numbers of iterations in 2nd round. *terminate_time3* maximum numbers of iterations in 3rd round. *interval2* interval for edge adding in 2nd round. *interval3* interval for edge adding in 3rd round. """ category = "Border Removal" author = "Yue Phyllis Ouyang and John Ashley Burgoyne" url = "http://ddmal.music.mcgill.ca/" return_type = ImageType([ONEBIT], "output") self_type = ImageType([ONEBIT]) args = Args([ Int("terminate_time1", default=15), Int("terminate_time2", default=23), Int("terminate_time3", default=75), Int("interval2", default=45), Int("interval3", default=15) ]) def __call__(self, terminate_time1=15, terminate_time2=23, terminate_time3=75, interval2=45, interval3=15): return _border_removal.boundary_reconstruct(self, terminate_time1, terminate_time2, terminate_time3, interval2, interval3) __call__ = staticmethod(__call__)
class lyric_line_detection(PluginFunction): """ Returns the mask of lyric lines. Gathers baseline_detection, lyric_height_estimation and lyric_line_fit functions. Note: no post-processing to extract precise posistion of each lyric or deal with overlapping situation is applied. """ return_type = ImageType([ONEBIT], "output") self_type = ImageType([ONEBIT]) args = Args([Real("staffspace"), Int("threshold_noise", default=15), Real("scalar_cc_strip", default=1.0), Real("seg_angle_degree", default=30.0), Real("scalar_seg_dist", default=3.5), Int("min_group", default=4), Real("merge_angle_degree", default=5.0), Real("scalar_merge_dist", default=5.0), Real("valid_angle_degree", default=20.0), Real("scalar_valid_height", default=1.0), Int("valid_min_group", default=8), Real("scalar_height", default=3.0), Real("fit_angle_degree", default=2.5), Real("scalar_search_height", default=1.2), Real("scalar_fit_up", default=1.2), Real("scalar_fit_down", default=0.3)]) def __call__(self, staffspace, threshold_noise=15, scalar_cc_strip=1.0, seg_angle_degree=30.0, scalar_seg_dist=3.5, min_group=4, merge_angle_degree=5.0, scalar_merge_dist=5.0, valid_angle_degree=20.0, scalar_valid_height=1.0, valid_min_group=8, scalar_height=3.0, fit_angle_degree=2.5, scalar_search_height=1.2, scalar_fit_up=1.2, scalar_fit_down=0.3): return _lyricline.lyric_line_detection(self, staffspace, threshold_noise, scalar_cc_strip, seg_angle_degree, scalar_seg_dist, min_group, merge_angle_degree, scalar_merge_dist, valid_angle_degree, scalar_valid_height, valid_min_group, scalar_height, fit_angle_degree, scalar_search_height, scalar_fit_up, scalar_fit_down) __call__ = staticmethod(__call__)
class count_black_under_line_points(PluginFunction): """ Returns the number of pixels beneath a given line that are the given colour. The arguments x0, y0 are the start coordinates of the line and the arguments x1, y1 are the end coordinates of the line. """ self_type = ImageType([ONEBIT]) return_type = Int("num_black_pixels") args = Args([Real("x0"), Real("y0"), Real("x1"), Real("y1")]) doc_examples = [(ONEBIT, )]
class count_black_under_line(PluginFunction): """ Returns the number of pixels beneath a given line that are black. The arguments 'slope' and 'y_intercept' correspond to the m and b in the equation of a line, y = m * x + b, respectively. I don't know if this works properly because I've had it count white pixels as black ones... """ self_type = ImageType([ONEBIT]) return_type = Int("num_black_pixels") args = Args([Real("slope"), Real("y_intercept")]) doc_examples = [(ONEBIT, )]
class directional_med_filter_bw(PluginFunction): """ Returns the regional intermediate value of an image as a FLOAT. The shape of window is not necessarily a square. This function currently only works on binary image. *region_width*, *region_height* The size of the region within which to calculate the intermediate pixel value. """ return_type = ImageType([ONEBIT], "output") self_type = ImageType([ONEBIT]) args = Args( [Int("region_width", default=5), Int("region_height", default=5)]) def __call__(self, region_width=5, region_height=5): return _staff_removal.directional_med_filter_bw( self, region_width, region_height) __call__ = staticmethod(__call__)
class mask_fill(PluginFunction): """ fills masked region with color """ return_type = ImageType([GREYSCALE, ONEBIT], "output") self_type = ImageType([GREYSCALE, ONEBIT]) args = Args([ImageType([ONEBIT], "mask"), Int("color")]) def __call__(self, mask, color): return _background_estimation.mask_fill(self, mask, color) __call__ = staticmethod(__call__)
class border_removal(PluginFunction): """ Returns the mask of music score region. Gathers paper_estimation, edge_detection and boundary_reconstruct functions. """ category = "Border Removal" author = "Yue Phyllis Ouyang and John Ashley Burgoyne" url = "http://ddmal.music.mcgill.ca/" return_type = ImageType([ONEBIT], "output") self_type = ImageType([GREYSCALE]) args = Args([ Int("win_dil", default=3), Int("win_avg", default=5), Int("win_med", default=5), Real("threshold1_scale", default=0.8), Real("threshold1_gradient", default=6.0), Real("threshold2_scale", default=0.8), Real("threshold2_gradient", default=6.0), Real("transfer_parameter", default=0.25), Int("terminate_time1", default=15), Int("terminate_time2", default=23), Int("terminate_time3", default=75), Int("interval2", default=45), Int("interval3", default=15) ]) def __call__(self, win_dil=3, win_avg=5, win_med=5, threshold1_scale=0.8, threshold1_gradient=6.0, threshold2_scale=0.8, threshold2_gradient=6.0, transfer_parameter=0.25, terminate_time1=15, terminate_time2=23, terminate_time3=75, interval2=45, interval3=15): return _border_removal.border_removal( self, win_dil, win_avg, win_med, threshold1_scale, threshold1_gradient, threshold2_scale, threshold2_gradient, transfer_parameter, terminate_time1, terminate_time2, terminate_time3, interval2, interval3) __call__ = staticmethod(__call__)
class paper_estimation(PluginFunction): """ Returns the estimation of background paper by removing foreground pen strokes. Note: the default parameter works on image with standard area 114000 (rows*cols) Main process: filling hols -> mean filter -> median filter *sign* An extra smoothing process(dilation+erosion) is applied at the begining, when sign=1. An extra edge-preserving process(filling holes) is applied at the end, when sign=0. *dil_win* region size for dilation+erosion. *avg_win* region size for mean filter. *med_win* region size for median filter. """ category = "Border Removal" author = "Yue Phyllis Ouyang and John Ashley Burgoyne" url = "http://ddmal.music.mcgill.ca/" return_type = ImageType([GREYSCALE], "output") self_type = ImageType([GREYSCALE]) args = Args([ Int("sign", default=1), Int("dil_win", default=3), Int("avg_win", default=5), Int("med_win", default=5) ]) def __call__(self, sign=1, win_dil=3, win_avg=5, win_med=5): return _border_removal.paper_estimation(self, sign, win_dil, win_avg, win_med) __call__ = staticmethod(__call__)
class wiener2_filter(PluginFunction): """ Adaptive directional filtering *region_width*, *region_height* The size of the region within which to calculate the intermediate pixel value. *noise_variancee* noise variance. If negative, estimated automatically. """ return_type = ImageType([GREYSCALE, GREY16, FLOAT], "output") self_type = ImageType([GREYSCALE, GREY16, FLOAT]) args = Args([ Int("region_width", default=5), Int("region_height", default=5), Real("noise_variance", default=-1.0) ]) def __call__(self, region_width=5, region_height=5, noise_variance=-1.0): return _background_estimation.wiener2_filter(self, region_width, region_height, noise_variance) __call__ = staticmethod(__call__)
class background_estimation(PluginFunction): """ background estimation *med_size* the kernel for median filter. the default value works best for image with size 1000*1000 to 2000*2000 """ return_type = ImageType([GREYSCALE], "output") self_type = ImageType([GREYSCALE]) args = Args([Int("med_size", default=17)]) def __call__(self, med_size=17): return _background_estimation.background_estimation(self, med_size) __call__ = staticmethod(__call__)
class med_filter(PluginFunction): """ Returns the regional intermediate value of an image as a FLOAT. *region_size* The size of the region within which to calculate the intermediate pixel value. """ return_type = ImageType([FLOAT], "output") self_type = ImageType([GREYSCALE, GREY16, FLOAT]) args = Args([Int("region size", default=5)]) doc_examples = [(GREYSCALE, ), (GREY16, ), (FLOAT, )] category = "Border Removal" author = "Yue Phyllis Ouyang and John Ashley Burgoyne" url = "http://ddmal.music.mcgill.ca/" def __call__(self, region_size=5): return _border_removal.med_filter(self, region_size) __call__ = staticmethod(__call__)
class binarization(PluginFunction): """ *mask* Mask image that defines the process region *do_wiener* 1 if adding wiener filtering before binarization, otherwise 0 *region_width*, *region_height*, *noise_variance* parameters for wiener filter *med_size* The kernel for median filter. *region size*, *sensitivity*, *dynamic range*, *lower bound*, *upper bound* parameters for sauvola binarization *q*, *p1*, *p2* parameters for gatos thresholding the default values for wiener and median filtrs works best for image with size 1000*1000 to 2000*2000 Use the default settings for the other parameters unless you know what you are doing. """ return_type = ImageType([ONEBIT], "output") self_type = ImageType([GREYSCALE]) args = Args([ ImageType([ONEBIT], "mask"), FloatVector("reference_histogram"), Int("do_wiener", default=0), Int("wiener_width", default=5), Int("wiener_height", default=3), Real("noise_variance", default=-1.0), Int("med_size", default=17), Int("region size", default=15), Real("sensitivity", default=0.5), Int("dynamic range", range=(1, 255), default=128), Int("lower bound", range=(0, 255), default=20), Int("upper bound", range=(0, 255), default=150), Real("q", default=0.06), Real("p1", default=0.7), Real("p2", default=0.5) ]) def __call__(self, mask, reference_histogram, do_wiener=0, wiener_width=5, wiener_height=3, noise_variance=-1.0, med_size=17, region_size=15, sensitivity=0.5, dynamic_range=128, lower_bound=20, upper_bound=150, q=0.06, p1=0.7, p2=0.5): return _background_estimation.binarization( self, mask, reference_histogram, do_wiener, wiener_width, wiener_height, noise_variance, med_size, region_size, sensitivity, dynamic_range, lower_bound, upper_bound, q, p1, p2) __call__ = staticmethod(__call__)
class find_blackest_lines(PluginFunction): """ Operates on a binarised image and a list of its horizontal projections. Finds local peaks in the horizontal projections of the image. This means it adds up the number of times black is seen in a row and stores the value for each row in an array. It then finds local peaks in this array. It then draws a bunch of lines on the image, all pivoting around the centres of the horizontal projections. It discards all but the lines that cross the most black pixels and returns the start and end points of these lines, e.g. [ [(x00,y00),(x01,y01)], [(x10,y10),(x11,y11)], ... [(xn0,yn0),(xn1,yn1)] ]. Parameters: minimum_y_threshold: the minimum value that may be considered a local peak in the horizontal projection. num_searches: the number of searches to do around each local peak negative_bound: how far below the local peak to start the line search (this value is positive! so the value of negative_bound=10 will start searching 10 pixels below the peak-point (or -10 pixels. To make this even more confusing, the negative direction is actually upward when talking about images, but you already knew this from reading the Gamera documentation). positive_bound: how far above the local peak to start the line search delta: see the delta parameter for the peakdet function above thickness_above: the number of parallel lines to add above the original intercept line; this simulates "thickness" above the line; use 0 for just no extra lines thickness_below: the number of parallel lines to add below the original intercept line; this simulates "thickness" above the line; use 0 for just no extra lines """ self_type = ImageType([ONEBIT]) args = Args([ Class('horizontal_projections', list), Int("minimum_y_threshold"), Int("num_searches"), Int("negative_bound"), Int("positive_bound"), Int("delta"), Int("thickness_above"), Int("thickness_below") ]) return_type = Float("area") pure_python = True @staticmethod def __call__(self, horizontal_projections, minimum_y_threshold, num_searches, negative_bound, positive_bound, delta=10, thickness_above=0, thickness_below=0): return lyric_extractor_helper._find_blackest_lines( self, horizontal_projections, minimum_y_threshold, num_searches, negative_bound, positive_bound, delta, thickness_above, thickness_below)
class EditCnn(EditingAlgorithm): """**edit_cnn** (kNNInteractive *classifier*, int *k* = 0, bool *randomize*) Hart's *Condensed Nearest Neighbour (CNN)* editing. This alorithm is specialized in removing superfluous glyphs - glyphs that do not influence the recognition rate - from the classifier to improve its classification speed. Typically glyphs far from the classifiers decision boundaries are removed. *classifier* The classifier from which to create an edited copy *internalK* The k value used internally by the editing algorithm. 0 means, use the same value as the given classifier (recommended) *randomize* Because the processing order of the glyphs in the classifier impacts the result of this algorithm, the order will be randomized. If reproducable results are required, turn this option off. Reference: P.E. Hart: 'The Condensed Nearest Neighbor rule'. *IEEE Transactions on Information Theory*, 14(3):515-516, 1968 """ name = "Hart's Condensed Nearest Neighbour (CNN)" args = Args( [Int("Internal k", default=0), Check("Randomize", default=True)]) def __call__(self, classifier, k=0, randomize=True): # special case of empty classifier if (not classifier.get_glyphs()): return _copyClassifier(classifier) if k == 0: k = classifier.num_k progress = ProgressFactory("Generating edited CNN classifier...", len(classifier.get_glyphs())) # initialize Store (a) with a single element if randomize: elem = _randomSetElement(classifier.get_glyphs()) else: elem = classifier.get_glyphs().__iter__().next() aGlyphs = [elem] a = kNNInteractive(aGlyphs, classifier.features, classifier._perform_splits, k) progress.step() # initialize Grabbag (b) with all other b = classifier.get_glyphs().copy() b.remove(aGlyphs[0]) # Classify each glyph in b with a as the classifier # If glyph is misclassified, add it to a, repeat until no elements are # added to a changed = True while changed == True: changed = False # copy needed because iteration through dict is not possible while # deleting items from it copyOfB = b.copy() for glyph in copyOfB: if glyph.get_main_id() != _getMainId( a.guess_glyph_automatic(glyph)): b.remove(glyph) a.get_glyphs().add(glyph) progress.step() changed = True progress.kill() a.num_k = 1 return a
class EditMnn(EditingAlgorithm): """**edit_mnn** (kNNInteractive *classifier*, int *k* = 0, bool *protectRare*, int *rareThreshold*) Wilson's *Modified Nearest Neighbour* (MNN, aka *Leave-one-out-editing*). The algorithm removes 'bad' glyphs from the classifier, i.e. glyphs that are outliers from their class in featurespace, usually because they have been manually misclassified or are not representative for their class *classifier* The classifier from which to create an edited copy *internalK* The k value used internally by the editing algorithm. If 0 is given for this parameter, the original classifier's k is used (recommended). *protect rare classes* The algorithm tends to completely delete the items of rare classes, removing this whole class from the classifier. If this is not desired these rare classes can be explicitly protected from deletion. Note that enabling this option causes additional computing effort *rare class threshold* In case *protect rare classes* is enabled, classes with less than this number of elements are considered to be rare Reference: D. Wilson: 'Asymptotic Properties of NN Rules Using Edited Data'. *IEEE Transactions on Systems, Man, and Cybernetics*, 2(3):408-421, 1972 """ name = "Wilson's Modified Nearest Neighbour (MNN)" args = Args([ Int("Internal k", default=0), Check("Protect rare classes", default=True), Int("Rare class threshold", default=3) ]) def __call__(self, classifier, k=0, protectRare=True, rareThreshold=3): editedClassifier = _copyClassifier(classifier, k) toBeRemoved = set() progress = ProgressFactory("Generating edited MNN classifier...", len(classifier.get_glyphs())) # classify each glyph with its leave-one-out classifier for i, glyph in enumerate(classifier.get_glyphs()): editedClassifier.get_glyphs().remove(glyph) detectedClass = _getMainId(\ editedClassifier.guess_glyph_automatic(glyph)) # check if recognized class complies with the true class if glyph.get_main_id() != detectedClass: toBeRemoved.add(glyph) editedClassifier.get_glyphs().add(glyph) progress.step() rareClasses = self._getRareClasses(classifier.get_glyphs(), protectRare, rareThreshold) # remove 'bad' glyphs, if they are not in a rare class for glyph in toBeRemoved: if glyph.get_main_id() in rareClasses: continue editedClassifier.get_glyphs().remove(glyph) progress.kill() return editedClassifier def _getRareClasses(self, glyphs, protectRare, rareThreshold): """Produces a set containing the names of all rare classes""" result = set() if not protectRare: return result # histogram of classNames histo = {} for g in glyphs: count = histo.get(g.get_main_id(), 0) histo[g.get_main_id()] = count + 1 for className in histo: if histo[className] < rareThreshold: result.add(className) return result
class baseline_detection(PluginFunction): """ Detects the baseline of lyrics. Returns the local minimum vertex map of lyric baseline. *staffspace* staffspace height. *thershold noise* minimum area of connected component not considered as noise. *scalar_cc_strip* long connected components are broked into strips with certain width, scalar_cc_strip*staffspace. *seg_angle_degree* tolerance on angle between two adjacent local minimum vertices of the same line (in degree). *scalar_seg_dist* scalar_seg_dist*staffspace: tolerance on distance (in x-axis) between two adjacent local minimum vertices of the same line. *min_group* minimun number of local minimum vertices in a potential baseline segment. *merge_angle_degree* tolerance on angle between two adjacent potential baseline segments to merge into one line (in degree). *scalar_merge_dist* scalar_merge_dist*staffspace: tolerance on distance (in x-axis) between two adjacent potential baseline segments to merge into one line. *valid_angle_degree* tolerance on angle between baseline and horizon(in degree). *scalar_valid_height* scala_valid_height*staffspace: tolerance on distance (in y-axis) between local minimum vertices and the estimated baseline they belong to. *valid_min_group* minimun number of local minimum vertices in a baseline. """ return_type = ImageType([ONEBIT], "output") self_type = ImageType([ONEBIT]) args = Args([Real("staffspace"), Int("threshold_noise", default=15), Real("scalar_cc_strip", default=1.0), Real("seg_angle_degree", default=30.0), Real("scalar_seg_dist", default=3.5), Int("min_group", default=4), Real("merge_angle_degree", default=5.0), Real("scalar_merge_dist", default=5.0), Real("valid_angle_degree", default=20.0), Real("scalar_valid_height", default=1.0), Int("valid_min_group", default=8)]) def __call__(self, staffspace, threshold_noise=15, scalar_cc_strip=1.0, seg_angle_degree=30.0, scalar_seg_dist=3.5, min_group=4, merge_angle_degree=5.0, scalar_merge_dist=5.0, valid_angle_degree=30.0, scalar_valid_height=1.0, valid_min_group=8): return _lyricline.baseline_detection(self, staffspace, threshold_noise, scalar_cc_strip, seg_angle_degree, scalar_seg_dist, min_group, merge_angle_degree, scalar_merge_dist, valid_angle_degree, scalar_valid_height, valid_min_group) __call__ = staticmethod(__call__)
class extract_lyrics(PluginFunction): """ Takes in a binarised image and attempts to remove lyrics by processing horizontal projections (see find_blackest_lines). Whatever lines are found from find_blackest_lines are superimposed onto the connected components of the image. Those CCs are then removed from the binarised image. Parameters: minimum_y_threshold: the minimum value that may be considered a local peak in the horizontal projection. num_searches: the number of searches to do around each local peak negative_bound: how far below the local peak to start the line search (this value is positive! so the value of negative_bound=10 will start searching 10 pixels below the peak-point (or -10 pixels. To make this even more confusing, the negative direction is actually upward when talking about images, but you already knew this from reading the Gamera documentation). positive_bound: how far above the local peak to start the line search thickness_above: the number of parallel lines to add above the original intercept line; this simulates "thickness" above the line; use 0 for just no extra lines thickness_below: the number of parallel lines to add below the original intercept line; this simulates "thickness" above the line; use 0 for just no extra lines """ pure_python = 1 return_type = ImageType([ONEBIT], "output") self_type = ImageType([ONEBIT]) args = Args([ Int("minimum_y_threshold", default=10), Int("num_searches", default=4), Int("negative_bound", default=10), Int("postive_bound", default=10), Int("thickness_above", default=0), Int("thickness_below", default=0) ]) def __call__(self, minimum_y_threshold=10, num_searches=4, negative_bound=10, postive_bound=10, thickness_above=0, thickness_below=0): result = lyric_extractor_helper.extract_lyric_ccs( self, minimum_y_threshold=10, num_searches=4, negative_bound=10, postive_bound=10, thickness_above=0, thickness_below=0) for cc in set(result[0]) - set(result[1]): cc.fill_white() return self __call__ = staticmethod(__call__)
class segment_by_colour(PluginFunction): """ Same as extract_lyrics, only the lyrics and neumes are highlighted by the specified colours (neums: red, text: black). Parameters: minimum_y_threshold: the minimum value that may be considered a local peak in the horizontal projection. num_searches: the number of searches to do around each local peak negative_bound: how far below the local peak to start the line search (this value is positive! so the value of negative_bound=10 will start searching 10 pixels below the peak-point (or -10 pixels. To make this even more confusing, the negative direction is actually upward when talking about images, but you already knew this from reading the Gamera documentation). positive_bound: how far above the local peak to start the line search thickness_above: the number of parallel lines to add above the original intercept line; this simulates "thickness" above the line; use 0 for just no extra lines thickness_below: the number of parallel lines to add below the original intercept line; this simulates "thickness" above the line; use 0 for just no extra lines """ pure_python = 1 return_type = ImageType([RGB], "output") self_type = ImageType([ONEBIT]) args = Args([ Int("minimum_y_threshold", default=10), Int("num_searches", default=4), Int("negative_bound", default=10), Int("postive_bound", default=10), Int("thickness_above", default=0), Int("thickness_below", default=0) ]) def __call__(self, minimum_y_threshold=10, num_searches=4, negative_bound=10, postive_bound=10, thickness_above=0, thickness_below=0): from gamera.core import RGBPixel # Do analysis. result = lyric_extractor_helper.extract_lyric_ccs( self, minimum_y_threshold, num_searches, negative_bound, postive_bound, thickness_above, thickness_below) # Check color input. neumeColour = RGBPixel(0, 255, 0) lyricColour = RGBPixel(255, 0, 0) # Prepare output image. returnImage = self.to_rgb() # Do highlighting. for cc in set(result[0]) - set(result[1]): returnImage.highlight(cc, lyricColour) for cc in set(result[1]): returnImage.highlight(cc, neumeColour) return returnImage __call__ = staticmethod(__call__)
class staff_removal(PluginFunction): """ Removes stafflines from music scores. Note: it is specially for lyric line detection and cannot be used directly for standard staff removal. Main process: directional median filter -> reconsider pixels in neighbourhood of potential non-staff pixels *staffspace* staffspace height. If negative, estimated automatically. *staffheight* staff height. If negative, estimated automatically. *scalar_med_width_staffspace*, *scalar_med_height_staffspace* (scalar_med_width_staffspace*staffspace, scalar_med_height_staffspace*staffspace): region size for median filter estimated from staffspace. *scalar_med_width_staffheight*, *scalar_med_height_staffheight* (scalar_med_width_staffheight*staffheight, scalar_med_height_staffheight*staffheight): region size for median filter estimated from staffheight. *neighbour_width*, *neighbour_height* region size defined as neighbourhood of a pixel. *staff_win* width of each vertical strip. Local projection is done within each strip. *staffspace_threshold1*, *staffspace_threshold2* staffspace_threshold1 is the minimum height of staffline height. If the estimation is underneath this threshold, chose the next peak whose staffspace is over staffspace_threshold2 """ return_type = ImageType([ONEBIT], "output") self_type = ImageType([ONEBIT]) args = Args([ Int("staffspace", default=-1), Int("staffheight", default=-1), Real("scalar_med_width_staffspace", default=0.15), Real("scalar_med_height_staffspace", default=0.6), Real("scalar_med_width_staffheight", default=1.2), Real("scalar_med_height_staffheight", default=5.0), Int("neighbour_width", default=1), Int("neighbour_height", default=1), Int("staff_win", default=30), Int("staffspace_threshold1", default=5), Int("staffspace_threshold2", default=10) ]) def __call__(self, staffspace=-1, staffheight=-1, scalar_med_width_staffspace=0.15, scalar_med_height_staffspace=0.6, scalar_med_width_staffheight=1.2, scalar_med_height_staffheight=5.0, neighbour_width=1, neighbour_height=1, staff_win=30, staffspace_threshold1=5, staffspace_threshold2=10): return _staff_removal.staff_removal( self, staffspace, staffheight, scalar_med_width_staffspace, scalar_med_height_staffspace, scalar_med_width_staffheight, scalar_med_height_staffheight, neighbour_width, neighbour_height, staff_win, staffspace_threshold1, staffspace_threshold2) __call__ = staticmethod(__call__)