def test_transform_real_shopmodel():
    with open('./test/gams/real-shopmodel.gms', 'r') as in_file:
        gp = GamsParser(in_file)
        model = gp.transform()

        print("\nModel\n")
        print(model)

        print("\nSymbols:\n")
        for s in model.symbol():
            print(s)
def test_transform_real_shopmodel():
    with  open('./test/gams/inject-datagen.inc','r') as gen_file, \
      open('./test/gams/inject-datademand.inc','r') as demand_file, \
      open('./test/gams/inject-siteanalysis.gms','r') as main_file:

        gp_main = GamsParser(main_file)
        gp_gen = GamsParser(gen_file)
        gp_demand = GamsParser(demand_file)

        model_main = gp_main.transform()
        model_gen = gp_gen.transform()
        model_demand = gp_gen.transform()

        model = model_main + model_gen + model_demand

        print("\nModel\n")
        print(model)

        print("\nSymbols:\n")
        for s in model.symbol():
            print(s)
def test_transform_equation_def():
    with open('./test/gams/equation-basic.gms', 'r') as in_file:
        gp = GamsParser(in_file)
        parse_tree = gp.parse()
        print(parse_tree.pretty())
        model = gp.transform()

        print("\nModel\n")
        print(model)
        print("\nSymbols:\n")
        for s in model.symbol():
            print(s)
def test_transform_model_siteanalysis():
    with open('./test/gams/real-siteanalysis.gms', 'r') as in_file:
        gp = GamsParser(in_file)
        model = gp.transform()

        print("\nModel\n")
        print(model)

        print("\nSymbols:\n")
        for s in model.symbol():
            print(s)

        dm = model.toJSON()

        #print("\nmodel.toJSON\n")
        #print(dm)

        print("\nmodel.toDict Hack\n")
        m = model.toDict()
        scrub_meta(m)
        pprint.pprint(m)