def main(self): import sys sys.path.append("..") import os import tensorflow as tf from gan.load_data import load_data from gan.network import DoppelGANgerGenerator, Discriminator, \ RNNInitialStateType, AttrDiscriminator from gan.doppelganger import DoppelGANger from gan import output from gan.util import add_gen_flag, normalize_per_sample sys.modules["output"] = output (data_feature, data_attribute, data_gen_flag, data_feature_outputs, data_attribute_outputs) = \ load_data(os.path.join("..", "data", self._config["dataset"])) print(data_feature.shape) print(data_attribute.shape) print(data_gen_flag.shape) if self._config["self_norm"]: (data_feature, data_attribute, data_attribute_outputs, real_attribute_mask) = \ normalize_per_sample( data_feature, data_attribute, data_feature_outputs, data_attribute_outputs) else: real_attribute_mask = [True] * len(data_attribute_outputs) sample_len = self._config["sample_len"] data_feature, data_feature_outputs = add_gen_flag( data_feature, data_gen_flag, data_feature_outputs, sample_len) print(data_feature.shape) print(len(data_feature_outputs)) initial_state = None if self._config["initial_state"] == "variable": initial_state = RNNInitialStateType.VARIABLE elif self._config["initial_state"] == "random": initial_state = RNNInitialStateType.RANDOM elif self._config["initial_state"] == "zero": initial_state = RNNInitialStateType.ZERO else: raise NotImplementedError generator = DoppelGANgerGenerator( feed_back=self._config["feed_back"], noise=self._config["noise"], feature_outputs=data_feature_outputs, attribute_outputs=data_attribute_outputs, real_attribute_mask=real_attribute_mask, sample_len=sample_len, feature_num_layers=self._config["gen_feature_num_layers"], feature_num_units=self._config["gen_feature_num_units"], attribute_num_layers=self._config["gen_attribute_num_layers"], attribute_num_units=self._config["gen_attribute_num_units"], initial_state=initial_state) discriminator = Discriminator( num_layers=self._config["disc_num_layers"], num_units=self._config["disc_num_units"]) if self._config["aux_disc"]: attr_discriminator = AttrDiscriminator( num_layers=self._config["attr_disc_num_layers"], num_units=self._config["attr_disc_num_units"]) checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: gan = DoppelGANger( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data_feature=data_feature, data_attribute=data_attribute, real_attribute_mask=real_attribute_mask, data_gen_flag=data_gen_flag, sample_len=sample_len, data_feature_outputs=data_feature_outputs, data_attribute_outputs=data_attribute_outputs, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], generator=generator, discriminator=discriminator, attr_discriminator=(attr_discriminator if self._config["aux_disc"] else None), d_gp_coe=self._config["d_gp_coe"], attr_d_gp_coe=(self._config["attr_d_gp_coe"] if self._config["aux_disc"] else 0.0), g_attr_d_coe=(self._config["g_attr_d_coe"] if self._config["aux_disc"] else 0.0), d_rounds=self._config["d_rounds"], g_rounds=self._config["g_rounds"], g_lr=self._config["g_lr"], d_lr=self._config["d_lr"], attr_d_lr=(self._config["attr_d_lr"] if self._config["aux_disc"] else 0.0), extra_checkpoint_freq=self._config["extra_checkpoint_freq"], epoch_checkpoint_freq=self._config["epoch_checkpoint_freq"], num_packing=self._config["num_packing"]) gan.build() if "restore" in self._config and self._config["restore"]: restore = True else: restore = False gan.train(restore=restore)
def main(self): import sys sys.path.append("..") import os import tensorflow as tf from gan.load_data import load_data from gan.network import DoppelGANgerGenerator, Discriminator, \ RNNInitialStateType, AttrDiscriminator from gan.doppelganger import DoppelGANger from gan import output from gan.util import add_gen_flag, normalize_per_sample, \ renormalize_per_sample import numpy as np sys.modules["output"] = output (data_feature, data_attribute, data_gen_flag, data_feature_outputs, data_attribute_outputs) = \ load_data(os.path.join("..", "data", self._config["dataset"])) print(data_feature.shape) print(data_attribute.shape) print(data_gen_flag.shape) if self._config["self_norm"]: (data_feature, data_attribute, data_attribute_outputs, real_attribute_mask) = \ normalize_per_sample( data_feature, data_attribute, data_feature_outputs, data_attribute_outputs) else: real_attribute_mask = [True] * len(data_attribute_outputs) sample_len = self._config["sample_len"] data_feature, data_feature_outputs = add_gen_flag( data_feature, data_gen_flag, data_feature_outputs, sample_len) print(data_feature.shape) print(len(data_feature_outputs)) initial_state = None if self._config["initial_state"] == "variable": initial_state = RNNInitialStateType.VARIABLE elif self._config["initial_state"] == "random": initial_state = RNNInitialStateType.RANDOM else: return NotImplementedError generator = DoppelGANgerGenerator( feed_back=self._config["feed_back"], noise=self._config["noise"], feature_outputs=data_feature_outputs, attribute_outputs=data_attribute_outputs, real_attribute_mask=real_attribute_mask, sample_len=sample_len, feature_num_layers=self._config["gen_feature_num_layers"], feature_num_units=self._config["gen_feature_num_units"], attribute_num_layers=self._config["gen_attribute_num_layers"], attribute_num_units=self._config["gen_attribute_num_units"], initial_state=initial_state) discriminator = Discriminator( num_layers=self._config["disc_num_layers"], num_units=self._config["disc_num_units"]) if self._config["aux_disc"]: attr_discriminator = AttrDiscriminator( num_layers=self._config["attr_disc_num_layers"], num_units=self._config["attr_disc_num_units"]) checkpoint_dir = os.path.join(self._work_dir, "checkpoint") sample_dir = os.path.join(self._work_dir, "sample") time_path = os.path.join(self._work_dir, "time.txt") run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: gan = DoppelGANger( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data_feature=data_feature, data_attribute=data_attribute, real_attribute_mask=real_attribute_mask, data_gen_flag=data_gen_flag, sample_len=sample_len, data_feature_outputs=data_feature_outputs, data_attribute_outputs=data_attribute_outputs, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], generator=generator, discriminator=discriminator, attr_discriminator=(attr_discriminator if self._config["aux_disc"] else None), d_gp_coe=self._config["d_gp_coe"], attr_d_gp_coe=(self._config["attr_d_gp_coe"] if self._config["aux_disc"] else 0.0), g_attr_d_coe=(self._config["g_attr_d_coe"] if self._config["aux_disc"] else 0.0), d_rounds=self._config["d_rounds"], g_rounds=self._config["g_rounds"], g_lr=self._config["g_lr"], d_lr=self._config["d_lr"], attr_d_lr=(self._config["attr_d_lr"] if self._config["aux_disc"] else 0.0), extra_checkpoint_freq=self._config["extra_checkpoint_freq"], epoch_checkpoint_freq=self._config["epoch_checkpoint_freq"], num_packing=self._config["num_packing"]) gan.build() print("Finished building") total_generate_num_sample = \ (self._config["generate_num_train_sample"] + self._config["generate_num_test_sample"]) length = data_feature.shape[1] / sample_len real_attribute_input_noise = gan.gen_attribute_input_noise( total_generate_num_sample) addi_attribute_input_noise = gan.gen_attribute_input_noise( total_generate_num_sample) feature_input_noise = gan.gen_feature_input_noise( total_generate_num_sample, length) input_data = gan.gen_feature_input_data_free( total_generate_num_sample) for epoch_id in range(self._config["extra_checkpoint_freq"] - 1, self._config["epoch"], self._config["extra_checkpoint_freq"]): print("Processing epoch_id: {}".format(epoch_id)) mid_checkpoint_dir = os.path.join( checkpoint_dir, "epoch_id-{}".format(epoch_id)) if not os.path.exists(mid_checkpoint_dir): print("Not found {}".format(mid_checkpoint_dir)) continue save_path = os.path.join( self._work_dir, "generated_samples", "epoch_id-{}".format(epoch_id)) if not os.path.exists(save_path): os.makedirs(save_path) train_path_ori = os.path.join( save_path, "generated_data_train_ori.npz") test_path_ori = os.path.join( save_path, "generated_data_test_ori.npz") train_path = os.path.join( save_path, "generated_data_train.npz") test_path = os.path.join( save_path, "generated_data_test.npz") if os.path.exists(test_path): print("Save_path {} exists".format(save_path)) continue gan.load(mid_checkpoint_dir) print("Finished loading") features, attributes, gen_flags, lengths = gan.sample_from( real_attribute_input_noise, addi_attribute_input_noise, feature_input_noise, input_data) # specify given_attribute parameter, if you want to generate # data according to an attribute print(features.shape) print(attributes.shape) print(gen_flags.shape) print(lengths.shape) split = self._config["generate_num_train_sample"] if self._config["self_norm"]: np.savez( train_path_ori, data_feature=features[0: split], data_attribute=attributes[0: split], data_gen_flag=gen_flags[0: split]) np.savez( test_path_ori, data_feature=features[split:], data_attribute=attributes[split:], data_gen_flag=gen_flags[split:]) features, attributes = renormalize_per_sample( features, attributes, data_feature_outputs, data_attribute_outputs, gen_flags, num_real_attribute=3) print(features.shape) print(attributes.shape) np.savez( train_path, data_feature=features[0: split], data_attribute=attributes[0: split], data_gen_flag=gen_flags[0: split]) np.savez( test_path, data_feature=features[split:], data_attribute=attributes[split:], data_gen_flag=gen_flags[split:]) print("Done")
import os import tensorflow as tf from gan.load_data import load_data from gan.network import DoppelGANgerGenerator, Discriminator, RNNInitialStateType, AttrDiscriminator from gan.doppelganger import DoppelGANger from gan import output from gan.util import add_gen_flag, normalize_per_sample, renormalize_per_sample import numpy as np sys.modules["output"] = output (data_feature, data_attribute, data_gen_flag, data_feature_outputs, data_attribute_outputs) = \ load_data(os.path.join("../data/energy")) print(data_feature.shape) print(data_attribute.shape) print(data_gen_flag.shape) #if self._config["self_norm"]: (data_feature, data_attribute, data_attribute_outputs, real_attribute_mask) = \ normalize_per_sample( data_feature, data_attribute, data_feature_outputs, data_attribute_outputs) #else: #real_attribute_mask = [True] * len(data_attribute_outputs) sample_len = 7