Пример #1
0
class CategoricalLSTMPolicy2(StochasticPolicy2):
    """Categorical LSTM Policy.

    A policy represented by a Categorical distribution
    which is parameterized by a Long short-term memory (LSTM).

    It only works with akro.Discrete action space.

    Args:
        env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
        name (str): Policy name, also the variable scope.
        hidden_dim (int): Hidden dimension for LSTM cell.
        hidden_nonlinearity (callable): Activation function for intermediate
            dense layer(s). It should return a tf.Tensor. Set it to
            None to maintain a linear activation.
        hidden_w_init (callable): Initializer function for the weight
            of intermediate dense layer(s). The function should return a
            tf.Tensor.
        hidden_b_init (callable): Initializer function for the bias
            of intermediate dense layer(s). The function should return a
            tf.Tensor.
        recurrent_nonlinearity (callable): Activation function for recurrent
            layers. It should return a tf.Tensor. Set it to None to
            maintain a linear activation.
        recurrent_w_init (callable): Initializer function for the weight
            of recurrent layer(s). The function should return a
            tf.Tensor.
        output_nonlinearity (callable): Activation function for output dense
            layer. It should return a tf.Tensor. Set it to None to
            maintain a linear activation.
        output_w_init (callable): Initializer function for the weight
            of output dense layer(s). The function should return a
            tf.Tensor.
        output_b_init (callable): Initializer function for the bias
            of output dense layer(s). The function should return a
            tf.Tensor.
        hidden_state_init (callable): Initializer function for the
            initial hidden state. The functino should return a tf.Tensor.
        hidden_state_init_trainable (bool): Bool for whether the initial
            hidden state is trainable.
        cell_state_init (callable): Initializer function for the
            initial cell state. The functino should return a tf.Tensor.
        cell_state_init_trainable (bool): Bool for whether the initial
            cell state is trainable.
        state_include_action (bool): Whether the state includes action.
            If True, input dimension will be
            (observation dimension + action dimension).
        forget_bias (bool): If True, add 1 to the bias of the forget gate
            at initialization. It's used to reduce the scale of forgetting at
            the beginning of the training.
        layer_normalization (bool): Bool for using layer normalization or not.

    """
    def __init__(self,
                 env_spec,
                 name='CategoricalLSTMPolicy',
                 hidden_dim=32,
                 hidden_nonlinearity=tf.nn.tanh,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 recurrent_nonlinearity=tf.nn.sigmoid,
                 recurrent_w_init=tf.initializers.glorot_uniform(),
                 output_nonlinearity=tf.nn.softmax,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 hidden_state_init=tf.zeros_initializer(),
                 hidden_state_init_trainable=False,
                 cell_state_init=tf.zeros_initializer(),
                 cell_state_init_trainable=False,
                 state_include_action=True,
                 forget_bias=True,
                 layer_normalization=False):
        if not isinstance(env_spec.action_space, akro.Discrete):
            raise ValueError('CategoricalLSTMPolicy only works'
                             'with akro.Discrete action space.')

        super().__init__(name, env_spec)
        self._obs_dim = env_spec.observation_space.flat_dim
        self._action_dim = env_spec.action_space.n

        self._hidden_dim = hidden_dim
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._recurrent_nonlinearity = recurrent_nonlinearity
        self._recurrent_w_init = recurrent_w_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._hidden_state_init = hidden_state_init
        self._hidden_state_init_trainable = hidden_state_init_trainable
        self._cell_state_init = cell_state_init
        self._cell_state_init_trainable = cell_state_init_trainable
        self._forget_bias = forget_bias
        self._layer_normalization = layer_normalization
        self._state_include_action = state_include_action

        if state_include_action:
            self._input_dim = self._obs_dim + self._action_dim
        else:
            self._input_dim = self._obs_dim

        self._f_step_prob = None

        self.model = CategoricalLSTMModel(
            output_dim=self._action_dim,
            hidden_dim=self._hidden_dim,
            name='prob_network',
            forget_bias=forget_bias,
            hidden_nonlinearity=hidden_nonlinearity,
            hidden_w_init=hidden_w_init,
            hidden_b_init=hidden_b_init,
            recurrent_nonlinearity=recurrent_nonlinearity,
            recurrent_w_init=recurrent_w_init,
            hidden_state_init=hidden_state_init,
            hidden_state_init_trainable=hidden_state_init_trainable,
            cell_state_init=cell_state_init,
            cell_state_init_trainable=cell_state_init_trainable,
            output_nonlinearity=output_nonlinearity,
            output_w_init=output_w_init,
            output_b_init=output_b_init,
            layer_normalization=layer_normalization)

        self._prev_actions = None
        self._prev_hiddens = None
        self._prev_cells = None

    def build(self, state_input, name=None):
        """Build model.

        Args:
          state_input (tf.Tensor) : State input.
          name (str): Name of the model, which is also the name scope.

        """
        with tf.compat.v1.variable_scope(self.name) as vs:
            self._variable_scope = vs
            step_input_var = tf.compat.v1.placeholder(shape=(None,
                                                             self._input_dim),
                                                      name='step_input',
                                                      dtype=tf.float32)
            step_hidden_var = tf.compat.v1.placeholder(
                shape=(None, self._hidden_dim),
                name='step_hidden_input',
                dtype=tf.float32)
            step_cell_var = tf.compat.v1.placeholder(shape=(None,
                                                            self._hidden_dim),
                                                     name='step_cell_input',
                                                     dtype=tf.float32)

            self.model.build(state_input,
                             step_input_var,
                             step_hidden_var,
                             step_cell_var,
                             name=name)

        self._f_step_prob = tf.compat.v1.get_default_session().make_callable(
            [
                self.model.networks['default'].step_output,
                self.model.networks['default'].step_hidden,
                self.model.networks['default'].step_cell
            ],
            feed_list=[step_input_var, step_hidden_var, step_cell_var])

    @property
    def vectorized(self):
        """Vectorized or not.

        Returns:
            Bool: True if primitive supports vectorized operations.

        """
        return True

    def reset(self, do_resets=None):
        """Reset the policy.

        Note:
            If `do_resets` is None, it will be by default np.array([True]),
            which implies the policy will not be "vectorized", i.e. number of
            paralle environments for training data sampling = 1.

        Args:
            do_resets (numpy.ndarray): Bool that indicates terminal state(s).

        """
        if do_resets is None:
            do_resets = [True]
        do_resets = np.asarray(do_resets)
        if self._prev_actions is None or len(do_resets) != len(
                self._prev_actions):
            self._prev_actions = np.zeros(
                (len(do_resets), self.action_space.flat_dim))
            self._prev_hiddens = np.zeros((len(do_resets), self._hidden_dim))
            self._prev_cells = np.zeros((len(do_resets), self._hidden_dim))

        self._prev_actions[do_resets] = 0.
        self._prev_hiddens[do_resets] = self.model.networks[
            'default'].init_hidden.eval()
        self._prev_cells[do_resets] = self.model.networks[
            'default'].init_cell.eval()

    def get_action(self, observation):
        """Return a single action.

        Args:
            observation (numpy.ndarray): Observations.

        Returns:
            int: Action given input observation.
            dict(numpy.ndarray): Distribution parameters.

        """
        actions, agent_infos = self.get_actions([observation])
        return actions[0], {k: v[0] for k, v in agent_infos.items()}

    def get_actions(self, observations):
        """Return multiple actions.

        Args:
            observations (numpy.ndarray): Observations.

        Returns:
            list[int]: Actions given input observations.
            dict(numpy.ndarray): Distribution parameters.

        """
        if self._state_include_action:
            assert self._prev_actions is not None
            all_input = np.concatenate([observations, self._prev_actions],
                                       axis=-1)
        else:
            all_input = observations
        probs, hidden_vec, cell_vec = self._f_step_prob(
            all_input, self._prev_hiddens, self._prev_cells)

        actions = list(map(self.action_space.weighted_sample, probs))
        prev_actions = self._prev_actions
        self._prev_actions = self.action_space.flatten_n(actions)
        self._prev_hiddens = hidden_vec
        self._prev_cells = cell_vec
        agent_info = dict(prob=probs)
        if self._state_include_action:
            agent_info['prev_action'] = np.copy(prev_actions)
        return actions, agent_info

    @property
    def recurrent(self):
        """Recurrent or not.

        Returns:
            bool: Whether policy is recurrent or not.

        """
        return True

    @property
    def distribution(self):
        """Policy distribution.

        Returns:
            tfp.Distribution.OneHotCategorical: Policy distribution.

        """
        return self.model.networks['default'].dist

    @property
    def state_info_specs(self):
        """State info specifcation.

        Returns:
            List[str]: keys and shapes for the information related to the
                policy's state when taking an action.

        """
        if self._state_include_action:
            return [
                ('prev_action', (self._action_dim, )),
            ]
        return []

    def clone(self, name):
        """Return a clone of the policy.

        It only copies the configuration of the primitive,
        not the parameters.

        Args:
            name (str): Name of the newly created policy. It has to be
                different from source policy if cloned under the same
                computational graph.

        Returns:
            garage.tf.policies.CategoricalLSTMPolicy2: Newly cloned policy.

        """
        return self.__class__(
            name=name,
            env_spec=self._env_spec,
            hidden_dim=self._hidden_dim,
            hidden_nonlinearity=self._hidden_nonlinearity,
            hidden_w_init=self._hidden_w_init,
            hidden_b_init=self._hidden_b_init,
            recurrent_nonlinearity=self._recurrent_nonlinearity,
            recurrent_w_init=self._recurrent_w_init,
            output_nonlinearity=self._output_nonlinearity,
            output_w_init=self._output_w_init,
            output_b_init=self._output_b_init,
            hidden_state_init=self._hidden_state_init,
            hidden_state_init_trainable=self._hidden_state_init_trainable,
            cell_state_init=self._cell_state_init,
            cell_state_init_trainable=self._cell_state_init_trainable,
            state_include_action=self._state_include_action,
            forget_bias=self._forget_bias,
            layer_normalization=self._layer_normalization)

    def __getstate__(self):
        """Object.__getstate__.

        Returns:
            dict: the state to be pickled for the instance.

        """
        new_dict = super().__getstate__()
        del new_dict['_f_step_prob']
        return new_dict
    def test_is_pickleable(self):
        model = CategoricalLSTMModel(output_dim=1, hidden_dim=1)
        step_hidden_var = tf.compat.v1.placeholder(shape=(self.batch_size, 1),
                                                   name='step_hidden',
                                                   dtype=tf.float32)
        step_cell_var = tf.compat.v1.placeholder(shape=(self.batch_size, 1),
                                                 name='step_cell',
                                                 dtype=tf.float32)
        network = model.build(self._input_var, self._step_input_var,
                              step_hidden_var, step_cell_var)
        dist = network.dist
        # assign bias to all one
        with tf.compat.v1.variable_scope('CategoricalLSTMModel/lstm',
                                         reuse=True):
            init_hidden = tf.compat.v1.get_variable('initial_hidden')

        init_hidden.load(tf.ones_like(init_hidden).eval())

        hidden = np.zeros((self.batch_size, 1))
        cell = np.zeros((self.batch_size, 1))

        outputs1 = self.sess.run(dist.probs,
                                 feed_dict={self._input_var: self.obs_inputs})
        output1 = self.sess.run(
            [network.step_output, network.step_hidden, network.step_cell],
            feed_dict={
                self._step_input_var: self.obs_input,
                step_hidden_var: hidden,
                step_cell_var: cell
            })

        h = pickle.dumps(model)
        with tf.compat.v1.Session(graph=tf.Graph()) as sess:
            model_pickled = pickle.loads(h)

            input_var = tf.compat.v1.placeholder(tf.float32,
                                                 shape=(None, None,
                                                        self.feature_shape),
                                                 name='input')
            step_input_var = tf.compat.v1.placeholder(
                tf.float32, shape=(None, self.feature_shape), name='input')
            step_hidden_var = tf.compat.v1.placeholder(shape=(self.batch_size,
                                                              1),
                                                       name='initial_hidden',
                                                       dtype=tf.float32)
            step_cell_var = tf.compat.v1.placeholder(shape=(self.batch_size,
                                                            1),
                                                     name='initial_cell',
                                                     dtype=tf.float32)

            network2 = model_pickled.build(input_var, step_input_var,
                                           step_hidden_var, step_cell_var)
            dist2 = network2.dist
            outputs2 = sess.run(dist2.probs,
                                feed_dict={input_var: self.obs_inputs})
            output2 = sess.run(
                [
                    network2.step_output, network2.step_hidden,
                    network2.step_cell
                ],
                feed_dict={
                    step_input_var: self.obs_input,
                    step_hidden_var: hidden,
                    step_cell_var: cell
                })
            assert np.array_equal(outputs1, outputs2)
            assert np.array_equal(output1, output2)