Пример #1
0
    def setUp(self, mock_rand):
        mock_rand.return_value = 0.5
        super().setUp()
        self.obs_dim = (5, )
        self.act_dim = (2, )
        self.box_env = TfEnv(
            DummyBoxEnv(obs_dim=self.obs_dim, action_dim=self.act_dim))
        self.qf1 = ContinuousMLPQFunction(env_spec=self.box_env,
                                          hidden_sizes=(32, 32),
                                          name='QF1')
        self.qf2 = ContinuousMLPQFunction(env_spec=self.box_env,
                                          hidden_sizes=(64, 64),
                                          name='QF2')
        self.qf3 = ContinuousMLPQFunctionWithModel(env_spec=self.box_env,
                                                   hidden_sizes=(32, 32),
                                                   name='QF3')
        self.qf4 = ContinuousMLPQFunctionWithModel(env_spec=self.box_env,
                                                   hidden_sizes=(64, 64),
                                                   name='QF4')

        self.sess.run(tf.global_variables_initializer())

        for a, b in zip(self.qf3.get_trainable_vars(),
                        self.qf1.get_trainable_vars()):
            self.sess.run(a.assign(b))
        for a, b in zip(self.qf4.get_trainable_vars(),
                        self.qf2.get_trainable_vars()):
            self.sess.run(a.assign(b))

        self.obs = self.box_env.reset()
        self.act = np.full((2, ), 0.5)
    def test_get_qval_sym(self, obs_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('garage.tf.q_functions.'
                         'continuous_mlp_q_function_with_model.MLPMergeModel'),
                        new=SimpleMLPMergeModel):
            qf = ContinuousMLPQFunctionWithModel(env_spec=env.spec)
        env.reset()
        obs, _, _, _ = env.step(1)
        obs = obs.flatten()
        act = np.full(action_dim, 0.5).flatten()
        obs_ph, act_ph = qf.inputs

        output1 = qf.get_qval([obs], [act])

        input_var1 = tf.compat.v1.placeholder(tf.float32,
                                              shape=(None, obs.shape[0]))
        input_var2 = tf.compat.v1.placeholder(tf.float32,
                                              shape=(None, act.shape[0]))
        q_vals = qf.get_qval_sym(input_var1, input_var2, 'another')
        output2 = self.sess.run(q_vals,
                                feed_dict={
                                    input_var1: [obs],
                                    input_var2: [act]
                                })

        expected_output = np.full((1, ), 0.5)

        assert np.array_equal(output1, output2)
        assert np.array_equal(output2[0], expected_output)
    def test_is_pickleable(self, obs_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('garage.tf.q_functions.'
                         'continuous_mlp_q_function_with_model.MLPMergeModel'),
                        new=SimpleMLPMergeModel):
            qf = ContinuousMLPQFunctionWithModel(env_spec=env.spec)
        env.reset()
        obs, _, _, _ = env.step(1)
        obs = obs.flatten()
        act = np.full(action_dim, 0.5).flatten()
        obs_ph, act_ph = qf.inputs

        with tf.compat.v1.variable_scope(
                'ContinuousMLPQFunctionWithModel/SimpleMLPMergeModel',
                reuse=True):
            return_var = tf.compat.v1.get_variable('return_var')
        # assign it to all one
        return_var.load(tf.ones_like(return_var).eval())

        output1 = qf.get_qval([obs], [act])

        h_data = pickle.dumps(qf)
        with tf.compat.v1.Session(graph=tf.Graph()):
            qf_pickled = pickle.loads(h_data)
            obs_ph_pickled, act_ph_pickled = qf_pickled.inputs
            output2 = qf_pickled.get_qval([obs], [act])

        assert np.array_equal(output1, output2)
 def test_clone(self, obs_dim, action_dim, hidden_sizes):
     env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
     with mock.patch(('garage.tf.q_functions.'
                      'continuous_mlp_q_function_with_model.MLPMergeModel'),
                     new=SimpleMLPMergeModel):
         qf = ContinuousMLPQFunctionWithModel(env_spec=env.spec,
                                              hidden_sizes=hidden_sizes)
     qf_clone = qf.clone('another_qf')
     assert qf_clone._hidden_sizes == qf._hidden_sizes
    def test_output_shape(self, obs_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('garage.tf.q_functions.'
                         'continuous_mlp_q_function_with_model.MLPMergeModel'),
                        new=SimpleMLPMergeModel):
            qf = ContinuousMLPQFunctionWithModel(env_spec=env.spec)
        env.reset()
        obs, _, _, _ = env.step(1)
        obs = obs.flatten()
        act = np.full(action_dim, 0.5).flatten()
        obs_ph, act_ph = qf.inputs

        outputs = qf.get_qval([obs], [act])

        assert outputs.shape == (1, 1)
    def test_q_vals(self, obs_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('garage.tf.q_functions.'
                         'continuous_mlp_q_function_with_model.MLPMergeModel'),
                        new=SimpleMLPMergeModel):
            qf = ContinuousMLPQFunctionWithModel(env_spec=env.spec)
        env.reset()
        obs, _, _, _ = env.step(1)
        obs = obs.flatten()
        act = np.full(action_dim, 0.5).flatten()

        expected_output = np.full((1, ), 0.5)
        obs_ph, act_ph = qf.inputs

        outputs = qf.get_qval([obs], [act])
        assert np.array_equal(outputs[0], expected_output)

        outputs = qf.get_qval([obs, obs, obs], [act, act, act])

        for output in outputs:
            assert np.array_equal(output, expected_output)
    def test_q_vals_input_include_goal(self):
        env = TfEnv(DummyDictEnv())
        with mock.patch(('garage.tf.q_functions.'
                         'continuous_mlp_q_function_with_model.MLPMergeModel'),
                        new=SimpleMLPMergeModel):
            qf = ContinuousMLPQFunctionWithModel(env_spec=env.spec,
                                                 input_include_goal=True)
        env.reset()
        obs, _, _, _ = env.step(1)
        obs = np.concatenate((obs['observation'], obs['desired_goal']),
                             axis=-1)
        act = np.full((1, ), 0.5).flatten()

        expected_output = np.full((1, ), 0.5)
        obs_ph, act_ph = qf.inputs

        outputs = qf.get_qval([obs], [act])
        assert np.array_equal(outputs[0], expected_output)

        outputs = qf.get_qval([obs, obs, obs], [act, act, act])
        for output in outputs:
            assert np.array_equal(output, expected_output)
Пример #8
0
class TestContinuousMLPQFunctionTransit(TfGraphTestCase):
    @mock.patch('tensorflow.random.normal')
    def setUp(self, mock_rand):
        mock_rand.return_value = 0.5
        super().setUp()
        self.obs_dim = (5, )
        self.act_dim = (2, )
        self.box_env = TfEnv(
            DummyBoxEnv(obs_dim=self.obs_dim, action_dim=self.act_dim))
        self.qf1 = ContinuousMLPQFunction(env_spec=self.box_env,
                                          hidden_sizes=(32, 32),
                                          name='QF1')
        self.qf2 = ContinuousMLPQFunction(env_spec=self.box_env,
                                          hidden_sizes=(64, 64),
                                          name='QF2')
        self.qf3 = ContinuousMLPQFunctionWithModel(env_spec=self.box_env,
                                                   hidden_sizes=(32, 32),
                                                   name='QF3')
        self.qf4 = ContinuousMLPQFunctionWithModel(env_spec=self.box_env,
                                                   hidden_sizes=(64, 64),
                                                   name='QF4')

        self.sess.run(tf.global_variables_initializer())

        for a, b in zip(self.qf3.get_trainable_vars(),
                        self.qf1.get_trainable_vars()):
            self.sess.run(a.assign(b))
        for a, b in zip(self.qf4.get_trainable_vars(),
                        self.qf2.get_trainable_vars()):
            self.sess.run(a.assign(b))

        self.obs = self.box_env.reset()
        self.act = np.full((2, ), 0.5)

    def test_get_qval(self):
        q_val1 = self.qf1.get_qval([self.obs], [self.act])
        q_val2 = self.qf2.get_qval([self.obs], [self.act])
        q_val3 = self.qf3.get_qval([self.obs], [self.act])
        q_val4 = self.qf4.get_qval([self.obs], [self.act])

        assert np.array_equal(q_val1, q_val3)
        assert np.array_equal(q_val2, q_val4)

        q_val1 = self.qf1.get_qval([self.obs, self.obs], [self.act, self.act])
        q_val2 = self.qf2.get_qval([self.obs, self.obs], [self.act, self.act])
        q_val3 = self.qf3.get_qval([self.obs, self.obs], [self.act, self.act])
        q_val4 = self.qf4.get_qval([self.obs, self.obs], [self.act, self.act])

        assert np.array_equal(q_val1, q_val3)
        assert np.array_equal(q_val2, q_val4)

    def test_get_qval_sym(self):
        obs_ph = tf.placeholder(tf.float32, shape=(None, ) + self.obs_dim)
        act_ph = tf.placeholder(tf.float32, shape=(None, ) + self.act_dim)

        qval_sym1 = self.qf1.get_qval_sym(obs_ph, act_ph, name='qval_sym')
        qval_sym2 = self.qf2.get_qval_sym(obs_ph, act_ph, name='qval_sym')
        qval_sym3 = self.qf3.get_qval_sym(obs_ph, act_ph, name='qval_sym')
        qval_sym4 = self.qf4.get_qval_sym(obs_ph, act_ph, name='qval_sym')

        q_val1 = self.sess.run(qval_sym1,
                               feed_dict={
                                   obs_ph: [self.obs],
                                   act_ph: [self.act]
                               })
        q_val2 = self.sess.run(qval_sym2,
                               feed_dict={
                                   obs_ph: [self.obs],
                                   act_ph: [self.act]
                               })
        q_val3 = self.sess.run(qval_sym3,
                               feed_dict={
                                   obs_ph: [self.obs],
                                   act_ph: [self.act]
                               })
        q_val4 = self.sess.run(qval_sym4,
                               feed_dict={
                                   obs_ph: [self.obs],
                                   act_ph: [self.act]
                               })

        assert np.array_equal(q_val1, q_val3)
        assert np.array_equal(q_val2, q_val4)