Пример #1
0
def _generate_example(
    component_name: str
) -> Tuple[List[pd.DataFrame], pd.DataFrame, str, Graph]:
    while True:
        try:
            inputs, replay_map = datagen_dict[component_name]()
            #  Abstractions for the individual inputs.
            g_inputs = [DataFrameGraph(i) for i in inputs]
            strategy = RandomizedGraphStrategy()
            gen = generator_dict[component_name]
            output, program, graph, output_graph = gen.with_env(
                strategy=strategy, replay=replay_map).call(*inputs,
                                                           *g_inputs,
                                                           datagen=True)
            if 0 in output.shape:
                raise AssertionError("Got empty dataframe")

            #  Populate the placeholders
            program = program.format(
                **{f"inp{i}": f"inp{i}"
                   for i in range(1,
                                  len(inputs) + 1)})
            return inputs, output, program, graph

        except Exception as e:
            pass
Пример #2
0
    def test_df_graph(self):
        from gauss.domains.rlang.graphs import DataFrameGraph
        df = pd.DataFrame([['a', 'b', 'e'], ['c', 'd', 'f']], columns=['C1', 'C2', 'C3'])
        df_graph = DataFrameGraph(df)

        #  Check if all the nodes have been created.
        self.assertListEqual(list(df.columns), [c.value for c in df_graph.columns])
        self.assertListEqual(list(df.index), [c.value for c in df_graph.index])
        for row_df, row_df_graph in zip(df.values, df_graph.values):
            self.assertListEqual(list(row_df), [v.value for v in row_df_graph])
Пример #3
0
    def test_gather(self):
        from gauss.domains.rlang.generators import gen_gather, DataFrameGraph, RInterpreter
        gather = RInterpreter.gather
        df = pd.DataFrame([['a', 'b', 'e'], ['c', 'd', 'f']], columns=['C1', 'C2', 'C3'])
        result, call_str, graph, res_graph = gen_gather.call(df, DataFrameGraph(df))

        #  Result should not be equal to the input
        self.assertRaises(AssertionError, pd.testing.assert_frame_equal, df, result)

        #  Call str should evaluate to the result
        pd.testing.assert_frame_equal(result, eval(call_str.format(inp1='df')))
Пример #4
0
    def test_groupby(self):
        from gauss.domains.rlang.generators import gen_group_by_summarise, DataFrameGraph, RInterpreter
        group_by = RInterpreter.group_by
        summarise = RInterpreter.summarise

        df = pd.DataFrame([['A', 100], ['A', 200], ['B', 300]], columns=['C1', 'C2'])
        g_df = DataFrameGraph(df)
        result, call_str, graph, res_graph = gen_group_by_summarise.with_env(ignore_exceptions=False).call(df, g_df)

        #  Result should not be equal to the input
        self.assertRaises(AssertionError, pd.testing.assert_frame_equal, df, result)

        #  Call str should evaluate to the result
        pd.testing.assert_frame_equal(result, eval(call_str.format(inp1='df')))
Пример #5
0
    def test_inner_join(self):
        from gauss.domains.rlang.generators import gen_inner_join, DataFrameGraph, RInterpreter
        inner_join = RInterpreter.inner_join

        df1 = pd.DataFrame([['a', 'b', 'c'], ['d', 'g', 'c'], ['f', 'b', 'h']], columns=['c1', 'c2', 'c3'])
        df2 = pd.DataFrame([['x', 'g', 'z'], ['w', 'b', 'u'], ['y', 'g', 'j']], columns=['c4', 'c2', 'c5'])

        result, call_str, graph, res_graph = gen_inner_join.call(df1, df2, DataFrameGraph(df1), DataFrameGraph(df2))

        #  Result should not be equal to the input
        self.assertRaises(AssertionError, pd.testing.assert_frame_equal, df1, result)
        self.assertRaises(AssertionError, pd.testing.assert_frame_equal, df2, result)

        #  Call str should evaluate to the result
        pd.testing.assert_frame_equal(result, eval(call_str.format(inp1='df1', inp2='df2')))
Пример #6
0
def gen_inner_join(df1: pd.DataFrame,
                   df2: pd.DataFrame,
                   g_df1: DataFrameGraph,
                   g_df2: DataFrameGraph,
                   datagen: bool = False):
    """
    INNER_JOIN
    ------
    Example:
      inner_join(df1, df2)

        c1 c2 c3      c4 c2 c5          c1 c2 c3 c4 c5
      0  a  b  c    0  x  g  z        0  a  b  c  w  u
      1  d  g  c    1  w  b  u   ->   1  f  b  h  w  u
      2  f  b  h ,  2  y  g  j        2  d  g  c  x  z
                                      3  d  g  c  y  j

    ---------------
    Graph Abstraction:
    - EQUAL edges from all the columns in df1 and df2 to the corresponding column in the output.
    - EQUAL edges from all the rows in df1 and df2 to the corresponding row in the output, if included.
    - EQUAL edge between the input deletion nodes and the output deletion node.
    - DELETE edges from all the non-included cells in both df1 and df2 to the deletion node of the output.
    """

    result = RInterpreter.inner_join(df1, df2)
    call_str = f"inner_join({{inp1}}, {{inp2}})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df1, g_df2, g_res])
    added_edges: List[Edge] = []

    col_map_df1 = {c.value: c
                   for c in g_df1.columns
                   }  # Map from df1's columns to their column nodes
    col_map_df2 = {c.value: c
                   for c in g_df2.columns
                   }  # Map from df2's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edges from all the columns in df1 and df2 to the corresponding column in the output.
    for c, node in itertools.chain(col_map_df1.items(), col_map_df2.items()):
        added_edges.append(Edge(node, col_map_res[c], ELabel.EQUAL))

    #  Get the merge cols
    merge_cols = list(set(col_map_df1.keys()) & set(col_map_df2.keys()))

    #  Get the indices for each value tuple for df1 and df2 and result
    value_dict_df1 = collections.defaultdict(list)
    value_dict_df2 = collections.defaultdict(list)
    value_dict_res = collections.defaultdict(list)

    for idx, values in zip(df1.index, df1.loc[:, merge_cols].values):
        values = tuple(values)
        value_dict_df1[values].append(idx)

    for idx, values in zip(df2.index, df2.loc[:, merge_cols].values):
        values = tuple(values)
        value_dict_df2[values].append(idx)

    for idx, values in zip(result.index, result.loc[:, merge_cols].values):
        values = tuple(values)
        value_dict_res[values].append(idx)

    #  - EQUAL edges from all the rows in df1 and df2 to the corresponding row in the output, if included.
    #  - DELETE edges from all the non-included cells in both df1 and df2 to the deletion node of the output.
    deleted_df1 = set(df1.index)
    deleted_df2 = set(df2.index)

    for value, res_indices in value_dict_res.items():
        df1_indices = value_dict_df1[value]
        df2_indices = value_dict_df2[value]
        deleted_df1.difference_update(df1_indices)
        deleted_df2.difference_update(df2_indices)
        for idx_res, (idx1,
                      idx2) in zip(res_indices,
                                   itertools.product(df1_indices,
                                                     df2_indices)):
            for c in df1.columns:
                added_edges.append(
                    Edge(g_df1.loc[idx1, c], g_res.loc[idx_res, c],
                         ELabel.EQUAL))
            for c in df2.columns:
                added_edges.append(
                    Edge(g_df2.loc[idx2, c], g_res.loc[idx_res, c],
                         ELabel.EQUAL))

            for c in merge_cols:
                added_edges.append(
                    Edge(g_df1.loc[idx1, c], g_df2.loc[idx2, c], ELabel.EQUAL))
                added_edges.append(
                    Edge(g_df2.loc[idx2, c], g_df1.loc[idx1, c], ELabel.EQUAL))

    for idx1 in deleted_df1:
        for c in df1.columns:
            added_edges.append(
                Edge(g_df1.loc[idx1, c], g_res.deletion_node, ELabel.DELETE))

    for idx2 in deleted_df2:
        for c in df2.columns:
            added_edges.append(
                Edge(g_df2.loc[idx2, c], g_res.deletion_node, ELabel.DELETE))

    #  - EQUAL edge between the input deletion nodes and the output deletion node.
    added_edges.append(
        Edge(g_df1.deletion_node, g_res.deletion_node, ELabel.EQUAL))
    added_edges.append(
        Edge(g_df2.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #

    #  No arguments for this component.
    return result, call_str, graph, g_res
Пример #7
0
def gen_filter(df: pd.DataFrame, g_df: DataFrameGraph, datagen: bool = False):
    """
    FILTER
    ------
    Example:
     filter(df, 'C1 > 3')
      ---------------
                df               result
        C1  C2  C3           C1  C2  C3
     0   3   a   d  -->   0   4   b   e
     1   4   b   e        1   5   c   f
     2   5   c   f

    ---------------
    Graph Abstraction:
    - EQUAL edges between the all columns and cells in the input that are preserved to the
      corresponding nodes of the output.
    - Additional dependency edges from the cells of the column used in the filtering condition (C1 in the example).
    """

    cands_column = g_df.columns
    mode = SelectConst(["equality-inequality", "relop"], uid="filter_mode")

    if mode == "equality-inequality":
        column = SelectNode(cands_column, uid="filter_column_eq")
        all_values = set(df[column])
        value = SelectConst(list(all_values), uid="filter_value_eq")
        op = SelectConst(["==", "!="], uid="filter_eq_op")
        filter_expr = f"{column} {op} {value!r}"

    else:
        numeric_cols = set(df.select_dtypes('number').columns)
        column = SelectNode(
            [c for c in cands_column if c.value in numeric_cols],
            uid="filter_column_relop")
        all_values = set(df[column])
        value = SelectConst(list(all_values), uid="filter_value_relop")
        op = SelectConst(["<", ">"], uid="filter_relop")
        filter_expr = f"{column} {op} {value!r}"

    result = RInterpreter.filter_(df, filter_expr, reset_index=False)

    filtered_indices = list(result.index)
    removed_indices = list(set(df.index) - set(filtered_indices))
    result = result.reset_index(drop=True)
    call_str = f"filter({{inp1}}, {filter_expr!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    if op == "==":
        dep_label = ELabel.DEPENDENT_EQ
    elif op == "!=":
        dep_label = ELabel.DEPENDENT_INEQ
    elif op == "<":
        dep_label = ELabel.DEPENDENT_LT
    else:
        dep_label = ELabel.DEPENDENT_GT

    deletion_node_out = g_res.deletion_node

    #  - EQUAL edges for all columns.
    for c in col_map_df:
        added_edges.append(Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))
        #  - EQUAL edges for kept rows
        for index, v1, v2 in zip(filtered_indices, g_df.loc[filtered_indices,
                                                            c], g_res.loc[:,
                                                                          c]):
            interm_node = graph.create_intermediate_node(v2.value)
            added_edges.append(
                Edge(g_df.loc[index, column], interm_node, dep_label))
            added_edges.append(Edge(v1, interm_node, ELabel.EQUAL))
            added_edges.append(Edge(interm_node, v2, ELabel.EQUAL))

        #  - Mark the rest as deleted
        for v in g_df.loc[removed_indices, c]:
            added_edges.append(Edge(v, deletion_node_out, ELabel.DELETE))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #

    tagged_edges: List[TaggedEdge] = []
    if mode == 'equality-inequality':
        for c_node in cands_column:
            if column == c_node.value:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node, "SELECTED@filter_column_eq"))
            else:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node,
                               "NOT_SELECTED@filter_column_eq"))

        for cand_op in ["==", "!="]:
            if cand_op == op:
                graph.add_tags([f"SELECTED@{cand_op}@filter_eq_op"])
            else:
                graph.add_tags([f"NOT_SELECTED@{cand_op}@filter_eq_op"])

    else:
        for c_node in cands_column:
            if column == c_node.value:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node, "SELECTED@filter_column_relop"))
            else:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node,
                               "NOT_SELECTED@filter_column_relop"))

        for cand_op in ["<", ">"]:
            if cand_op == op:
                graph.add_tags([f"SELECTED@{cand_op}@filter_relop"])
            else:
                graph.add_tags([f"NOT_SELECTED@{cand_op}@filter_relop"])

    graph.add_tagged_edges(tagged_edges)

    for cand_mode in ["equality-inequality", "relop"]:
        if cand_mode == mode:
            graph.add_tags([f"SELECTED@{cand_mode}@filter_mode"])
        else:
            graph.add_tags([f"NOT_SELECTED@{cand_mode}@filter_mode"])

    return result, call_str, graph, g_res
Пример #8
0
def gen_mutate(df: pd.DataFrame, g_df: DataFrameGraph, datagen: bool = False):
    """
    MUTATE
    ------
    Example:
     mutate(df, new_col_name='C4', operation='normalize', col_args='C1')
      ---------------
                df                          result
        C1  C2  C3           C1  C2  C3         C4
     0   3   a   d  -->   0   3   a   d   0.250000
     1   4   b   e        1   4   b   e   0.333333
     2   5   c   f        2   5   c   f   0.416666

     mutate(df, new_col_name='C4', operation='div', col_args=['C1', 'C2'])
      ---------------
                 df                    result
        C1  C2   C3           C1  C2  C3   C4
     0   3   5    d  -->   0   3   a   d   0.6
     1   4   10   e        1   4   b   e   0.4
     2   5   20   f        2   5   c   f   0.25
    ---------------
    Graph Abstraction:
    - EQUAL edges between the all columns and cells in the input to the corresponding nodes of the output.
    - If normalize, SUM and DIV edges representing the computation. A unique sum intermediate node is created for each
      cell of the column being normalized.
    """

    cands_cols = g_df.columns
    operation = SelectConst(["normalize", "div"], uid="mutate_operation")

    new_col_name = FreshColumn(uid="mutate_new_col_name")
    if operation == "normalize":
        col_arg = SelectNode(cands_cols, uid="mutate_col_args_normalize")
        col_args = [col_arg]
        result = RInterpreter.mutate(df,
                                     new_col_name=new_col_name,
                                     operation=operation,
                                     col_args=col_arg)
        call_str = f"mutate({{inp1}}, new_col_name={new_col_name!r}, operation={operation!r}, col_args={col_arg!r})"

    else:
        col_arg1, col_arg2 = OrderedSubsetNode(cands_cols,
                                               uid="mutate_col_args_div",
                                               min_len=2,
                                               max_len=2)
        col_args = [col_arg1, col_arg2]
        result = RInterpreter.mutate(df,
                                     new_col_name=new_col_name,
                                     operation=operation,
                                     col_args=col_args)
        call_str = f"mutate({{inp1}}, new_col_name={new_col_name!r}, operation={operation!r}, col_args={col_args!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edges between the corresponding columns as all columns are preserved.
    #  - EQUAL edges between the cells that are preserved.
    for c in col_map_df:
        added_edges.append(Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))
        for v1, v2 in zip(g_df.loc[:, c], g_res.loc[:, c]):
            added_edges.append(Edge(v1, v2, ELabel.EQUAL))

    if operation == 'normalize':
        summation = df[col_args[0]].sum()
        for cell_node, res_node in zip(g_df.loc[:, col_args[0]],
                                       g_res.loc[:, new_col_name]):
            #  Add the sum edges
            interm_node_sum = graph.create_intermediate_node(summation)
            for c in g_df.loc[:, col_args[0]]:
                added_edges.append(Edge(c, interm_node_sum, ELabel.SUM))

            interm_node_div = graph.create_intermediate_node(res_node.value)
            added_edges.append(
                Edge(interm_node_sum, interm_node_div, ELabel.DIV))
            added_edges.append(Edge(cell_node, interm_node_div, ELabel.DIV))
            added_edges.append(Edge(interm_node_div, res_node, ELabel.EQUAL))

    else:
        for cell_nodes, res_node in zip(g_df.loc[:, col_args].values,
                                        g_res.loc[:, new_col_name]):
            interm_node = graph.create_intermediate_node(res_node.value)
            added_edges.append(Edge(interm_node, res_node, ELabel.EQUAL))
            for n in cell_nodes:
                added_edges.append(Edge(n, interm_node, ELabel.DIV))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #

    tagged_edges: List[TaggedEdge] = []
    if operation == 'normalize':
        for c_node in cands_cols:
            if c_node.value in col_args:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node,
                               "SELECTED@mutate_col_args_normalize"))
            else:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node,
                               "NOT_SELECTED@mutate_col_args_normalize"))

    else:
        for c_node in cands_cols:
            if c_node.value in col_args:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node, "SELECTED@mutate_col_args_div"))
            else:
                tagged_edges.append(
                    TaggedEdge(c_node, c_node,
                               "NOT_SELECTED@mutate_col_args_div"))

    graph.add_tags([
        f"SELECTED@{cand}@mutate_operation"
        if cand == operation else f"NOT_SELECTED@{cand}@mutate_operation"
        for cand in ["normalize", "div"]
    ])

    graph.add_tagged_edges(tagged_edges)
    return result, call_str, graph, g_res
Пример #9
0
def gen_select(df: pd.DataFrame, g_df: DataFrameGraph, datagen: bool = False):
    """
    SELECT
    ------
    Example:
     select(df, columns_keep=None, columns_remove=['C3'])
      ---------------
                df        result
        C1  C2  C3           C1  C2
     0   3   a   d  -->   0   3   a
     1   4   b   e        1   4   b
     2   5   c   f        2   5   c

    ---------------
    Graph Abstraction:
    - EQUAL edges between the columns, cells of the preserved columns and the corresponding cells in the output.
    - DELETE edges for the removed columns and their cells.
    """
    cands_cols = list(g_df.columns)
    choice = SelectConst([True, False], uid="select_keep_or_remove")
    if choice:
        columns_keep = list(
            SubsetNode(cands_cols,
                       uid="select_columns_keep",
                       allow_empty=False))
        columns_remove = None
    else:
        columns_keep = None
        columns_remove = list(
            SubsetNode(cands_cols,
                       uid="select_columns_remove",
                       allow_empty=False))

    result = RInterpreter.select(df,
                                 columns_keep=columns_keep,
                                 columns_remove=columns_remove)
    call_str = f"select({{inp1}}, columns_keep={columns_keep!r}, columns_remove={columns_remove!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    if choice:
        kept_cols = set(columns_keep)
        removed_cols = [c for c in df.columns if c not in kept_cols]

    else:
        removed_cols = set(columns_remove)
        kept_cols = [c for c in df.columns if c not in removed_cols]

    #  - EQUAL edges between the corresponding preserved columns.
    #  - EQUAL edges between the cells that are preserved.
    for c in kept_cols:
        added_edges.append(Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))
        for v1, v2 in zip(g_df.loc[:, c], g_res.loc[:, c]):
            added_edges.append(Edge(v1, v2, ELabel.EQUAL))

    #  - DELETE edges for the deleted columns and their cells.
    for c in removed_cols:
        added_edges.append(
            Edge(col_map_df[c], g_res.deletion_node, ELabel.DELETE))
        for v in g_df.loc[:, c]:
            added_edges.append(Edge(v, g_res.deletion_node, ELabel.DELETE))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #
    tagged_edges: List[TaggedEdge] = []

    if choice:
        for c_node in cands_cols:
            if c_node.value in columns_keep:
                tagged_edges.append(
                    TaggedEdge(src=c_node,
                               dst=c_node,
                               tag="SELECTED@select_columns_keep"))
            else:
                tagged_edges.append(
                    TaggedEdge(src=c_node,
                               dst=c_node,
                               tag="NOT_SELECTED@select_columns_keep"))

    else:
        for c_node in cands_cols:
            if c_node.value in columns_remove:
                tagged_edges.append(
                    TaggedEdge(src=c_node,
                               dst=c_node,
                               tag="SELECTED@select_columns_remove"))
            else:
                tagged_edges.append(
                    TaggedEdge(src=c_node,
                               dst=c_node,
                               tag="NOT_SELECTED@select_columns_remove"))

    for cand_choice in [True, False]:
        if cand_choice == choice:
            graph.add_tags([f"SELECTED@{cand_choice}@select_keep_or_remove"])
        else:
            graph.add_tags(
                [f"NOT_SELECTED@{cand_choice}@select_keep_or_remove"])

    graph.add_tagged_edges(tagged_edges)
    return result, call_str, graph, g_res
Пример #10
0
def gen_spread(df: pd.DataFrame, g_df: DataFrameGraph, datagen: bool = False):
    """
    SPREAD
    ------
    Example:
     spread(columns='var', values='value')
      ---------------
                    df                      result
        C1  var  value                C1   C2   C3
     0   c   C2      b            0    a    d    e
     1   a   C2      d     -->    1    c    b  NaN
     2   a   C3      e

    ---------------
    Graph Abstraction:
     - EQUAL edge between the nodes in the `columns` column and the column node of the result.
     - EQUAL edge between the `index` column and the corresponding column node of the result.
     - EQUAL edge between the cells of `values` column and the corresponding cells in the result.
     - EQUAL edge between the input deletion node and the output deletion node.
    """

    cands_columns = g_df.columns
    columns = SelectNode(cands_columns, uid="spread_columns")

    cands_values = [c for c in g_df.columns if c.value != columns]
    values = SelectNode(cands_values, uid="spread_values")

    index = [c for c in df.columns if c != columns and c != values
             ]  # The columns that will remain as is.

    result = RInterpreter.spread(df, columns=columns, values=values)
    call_str = f"spread({{inp1}}, columns={columns!r}, values={values!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edge between the nodes in the `columns` column and the column node of the result.
    for cell in g_df.loc[:, columns]:
        added_edges.append(Edge(cell, col_map_res[cell.value], ELabel.EQUAL))

    #  - EQUAL edge between the `index` column and the corresponding column node of the result.
    #  - EQUAL edge between the cells of `index` column and the corresponding cells in the result.
    for c in index:
        added_edges.append(Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))
        value_map = {n.value: n for n in g_res.loc[:, c]}
        for cell in g_df.loc[:, c]:
            added_edges.append(Edge(cell, value_map[cell.value], ELabel.EQUAL))

    #  - EQUAL edge between the cells of `values` column and the corresponding cells in the result.
    for idx_vals, col_val, df_val_node in zip(
            df[index].values if len(index) > 0 is not None else df.index,
            df.loc[:, columns], g_df.loc[:, values]):
        if len(index) == 0:
            filtered = [g_res.loc[idx_vals, col_val]]
        else:
            idx_mask = True
            for idx_val, idx in zip(idx_vals, index):
                idx_mask = idx_mask & (result[idx] == idx_val)

            filtered = list(g_res.loc[idx_mask][col_val])

        assert len(filtered) == 1
        res_val_node = filtered[0]
        added_edges.append(Edge(df_val_node, res_val_node, ELabel.EQUAL))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #
    tagged_edges: List[TaggedEdge] = []
    for c_node in cands_columns:
        if c_node.value == columns:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="SELECTED@spread_columns"))
        else:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="NOT_SELECTED@spread_columns"))

    for c_node in cands_values:
        if c_node.value == values:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="SELECTED@spread_values"))
        else:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="NOT_SELECTED@spread_values"))

    graph.add_tagged_edges(tagged_edges)

    return result, call_str, graph, g_res
Пример #11
0
def gen_separate(df: pd.DataFrame,
                 g_df: DataFrameGraph,
                 datagen: bool = False):
    """
    SEPARATE
    ------
    Example:
     separate(split_col='C2', into=["C3", "C4"])
      ---------------
              df           result
        C1    C2       C1  C3  C4
     0   3   a_d    0   3   a   d
     1   4   b_e    1   4   b   e
     2   5   c_f    2   5   c   f

    ---------------
    Graph Abstraction:
    - EQUAL edges between the columns, cells of the preserved columns and the corresponding cells in the output.
    - STR_SPLIT edges between concerned cells.
    """
    cands_cols = g_df.columns
    split_col = SelectNode(cands_cols, min_len=2, uid="separate_split_col")
    max_into_len = max([
        len(re.compile("[^a-zA-Z0-9]+").split(str(x))) for x in df[split_col]
    ])
    if max_into_len <= 1:
        raise ExceptionAsContinue

    into = [FreshColumn(uid="separate_into") for _ in range(max_into_len)]
    result = RInterpreter.separate(df, split_col=split_col, into=into)
    call_str = f"separate({{inp1}}, split_col={split_col!r}, into={into!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edges between columns that are unused and their cells to their counterparts.
    unused_cols = set(col_map_df)
    unused_cols.difference_update(split_col)

    for c in col_map_df:
        if c != split_col:
            added_edges.append(
                Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))
            for v1, v2 in zip(g_df.loc[:, c], g_res.loc[:, c]):
                added_edges.append(Edge(v1, v2, ELabel.EQUAL))

    for df_node, res_nodes in zip(g_df.loc[:, split_col],
                                  g_res.loc[:, into].values):
        for n in res_nodes:
            interm_node = graph.create_intermediate_node(n.value)
            added_edges.append(Edge(interm_node, n, ELabel.EQUAL))
            added_edges.append(Edge(df_node, interm_node, ELabel.STR_SPLIT))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #

    tagged_edges: List[TaggedEdge] = []
    for c_node in cands_cols:
        if c_node.value == split_col:
            tagged_edges.append(
                TaggedEdge(c_node, c_node, "SELECTED@separate_split_col"))
        else:
            tagged_edges.append(
                TaggedEdge(c_node, c_node, "NOT_SELECTED@separate_split_col"))

    graph.add_tagged_edges(tagged_edges)
    return result, call_str, graph, g_res
Пример #12
0
def gen_unite(df: pd.DataFrame, g_df: DataFrameGraph, datagen: bool = False):
    """
    UNITE
    ------
    Example:
     unite(cols=['C2', 'C3'], new_col_name='C4')
      ---------------
                df             result
        C1  C2  C3           C1    C4
     0   3   a   d  -->   0   3   a_d
     1   4   b   e        1   4   b_e
     2   5   c   f        2   5   c_f

    ---------------
    Graph Abstraction:
    - EQUAL edges between the columns, cells of the preserved columns and the corresponding cells in the output.
    - STR_JOIN edges between concerned cells.
    """

    cands_cols = g_df.columns
    cols = list(OrderedSubsetNode(cands_cols, min_len=2, uid="unite_cols"))

    new_col_name = FreshColumn(uid="unite_new_col_name")

    result = RInterpreter.unite(df, cols=cols, new_col_name=new_col_name)
    call_str = f"unite({{inp1}}, cols={cols!r}), new_col_name={new_col_name!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edges between columns that are unused and their cells to their counterparts.
    unused_cols = set(col_map_df)
    unused_cols.difference_update(cols)

    for c in unused_cols:
        added_edges.append(Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))
        for v1, v2 in zip(g_df.loc[:, c], g_res.loc[:, c]):
            added_edges.append(Edge(v1, v2, ELabel.EQUAL))

    for df_nodes, res_node in zip(g_df.loc[:, cols].values,
                                  g_res.loc[:, new_col_name]):
        interm_node = graph.create_intermediate_node(res_node.value)
        for n in df_nodes:
            added_edges.append(Edge(n, interm_node, ELabel.STR_JOIN))

        added_edges.append(Edge(interm_node, res_node, ELabel.EQUAL))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #

    tagged_edges: List[TaggedEdge] = []
    for c_node in cands_cols:
        if c_node.value in cols:
            tagged_edges.append(
                TaggedEdge(c_node, c_node, "SELECTED@unite_cols"))
        else:
            tagged_edges.append(
                TaggedEdge(c_node, c_node, "NOT_SELECTED@unite_cols"))

    graph.add_tagged_edges(tagged_edges)
    return result, call_str, graph, g_res
Пример #13
0
def gen_gather(df: pd.DataFrame, g_df: DataFrameGraph, datagen: bool = False):
    """
    GATHER
    ------
    Example:
     gather(id_vars=['C1'], value_vars=['C2', 'C3'], var_name='var', value_name='value')

             df                            result
       C1 C2 C3                    C1  var  value
     0  a  b  e       -->       0   a   C2      b
     1  c  d  f                 1   c   C2      d
                                2   a   C3      e
                                3   c   C3      f

    ---------------
    Graph Abstraction:
    - EQUAL edges between id_var columns and corresponding columns in output.
    - EQUAL edges between value_var columns and corresponding cells in output.
    - EQUAL edges between cells of id_var and value_var columns to the corresponding cells in output.
    - EQUAL edge between the input deletion node and the output deletion node.
    - DELETE edge between the columns not in id_vars and value_vars to the output deletion node.
    - DELETE edge between the cells of columns not in id_vars and value_vars to the output deletion node.
    """

    cands_id_vars = g_df.columns
    id_vars = list(
        SubsetNode(cands_id_vars, uid="gather_id_vars", allow_empty=True))

    cands_value_vars = [c for c in g_df.columns if c.value not in id_vars]
    value_vars = list(SubsetNode(cands_value_vars, uid="gather_value_vars"))

    var_name = FreshColumn(uid="gather_var_name")
    value_name = FreshColumn(uid="gather_value_name")

    result = RInterpreter.gather(df,
                                 id_vars=id_vars,
                                 value_vars=value_vars,
                                 var_name=var_name,
                                 value_name=value_name)
    call_str = f"gather({{inp1}}, id_vars={id_vars!r}, value_vars={value_vars!r}, " \
               f"var_name={var_name!r}, value_name={value_name!r})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edges between id_var columns and corresponding columns in output.
    for c1, c2 in ((col_map_df[c], col_map_res[c]) for c in id_vars or []):
        added_edges.append(Edge(c1, c2, ELabel.EQUAL))

    #  - EQUAL edges between value_var columns and corresponding cells in output.
    for var_node in g_res.loc[:, var_name]:
        added_edges.append(
            Edge(col_map_df[var_node.value], var_node, ELabel.EQUAL))

    #  - EQUAL edges between cells of id_var and value_var columns to the corresponding cells in output.
    for col in id_vars or []:
        df_nodes_concat = list(g_df.loc[:, col]) * len(value_vars)
        for n1, n2 in zip(df_nodes_concat, g_res.loc[:, col]):
            added_edges.append(Edge(n1, n2, ELabel.EQUAL))

    value_nodes_concat = sum((list(g_df.loc[:, c]) for c in value_vars), [])
    for n1, n2 in zip(value_nodes_concat, g_res.loc[:, value_name]):
        added_edges.append(Edge(n1, n2, ELabel.EQUAL))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  - DELETE edge between the columns not in id_vars and value_vars to the output deletion node.
    #  - DELETE edge between the cells of columns not in id_vars and value_vars to the output deletion node.
    unused_cols = [
        c for c in df.columns if c not in id_vars and c not in value_vars
    ]
    for col in unused_cols:
        added_edges.append(
            Edge(col_map_df[col], g_res.deletion_node, ELabel.DELETE))
        for val_node in g_df.loc[:, col]:
            added_edges.append(
                Edge(val_node, g_res.deletion_node, ELabel.DELETE))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #
    tagged_edges: List[TaggedEdge] = []
    for c_node in cands_id_vars:
        if id_vars is not None and c_node.value in id_vars:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="SELECTED@gather_id_vars"))
        else:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="NOT_SELECTED@gather_id_vars"))

    for c_node in cands_value_vars:
        if c_node.value in value_vars:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="SELECTED@gather_value_vars"))
        else:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="NOT_SELECTED@gather_value_vars"))

    graph.add_tagged_edges(tagged_edges)
    return result, call_str, graph, g_res
Пример #14
0
def gen_group_by_summarise(df: pd.DataFrame,
                           g_df: DataFrameGraph,
                           datagen: bool = False):
    """
    GROUP_BY (+ SUMMARISE)
    ------
    Example:
     group_by(group_cols=['C1']).summarise(summaries={"C3": ("C2", "mean")})
              df              result
        C1    C2            C1    C3
     0   A   100         0   A   150
     1   A   200   -->   1   B   300
     2   B   300

    ---------------
    Graph Abstraction:
    - EQUAL edges between group columns and corresponding columns in output.
    - EQUAL edges between the cells of the group columns and the corresponding cells in the output.
    - SUM/MEAN/COUNT edges between the cells of aggregated columns (or group columns in case of 'count') and the
      resulting cells in the output.
    - EQUAL edge between the input deletion node and the output deletion node.
    - DELETE edges between the non-group cols and non-aggregated columns and their cells
      to the deletion node of the output.
    - DELETE edge between the column of the aggregated column (in case of sum/mean) and the deletion node of the output.
    """

    cands_group_cols = g_df.columns
    group_cols = list(SubsetNode(cands_group_cols, uid="group_by_group_cols"))
    new_col = FreshColumn(uid="summarise_new_col")
    agg_cands = ["count", "mean", "sum"]
    agg = SelectConst(agg_cands, uid="summarise_agg")

    if agg != "count":
        cands_agg_col = [c for c in g_df.columns if c.value not in group_cols]
        agg_col = SelectNode(cands_agg_col, uid="summarise_col")
    else:
        cands_agg_col = None
        agg_col = None

    summaries = {new_col: (agg_col, agg)}
    result_groupby = RInterpreter.group_by(df, group_cols)
    result = RInterpreter.summarise(result_groupby, summaries)

    call_str = f"summarise(group_by({{inp1}}, group_cols={group_cols!r}), summaries={{{summaries!r}}})"

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Graph Construction
    #  --------------------------------------------------------------------------------------------------------------  #

    g_res = DataFrameGraph(result)
    graph = GraphRLang.assemble([g_df, g_res])
    added_edges: List[Edge] = []

    col_map_df = {c.value: c
                  for c in g_df.columns
                  }  # Map from df's columns to their column nodes
    col_map_res = {c.value: c
                   for c in g_res.columns
                   }  # Map from result's columns to their column nodes

    #  - EQUAL edges between group columns and corresponding columns in output.
    for c in group_cols:
        added_edges.append(Edge(col_map_df[c], col_map_res[c], ELabel.EQUAL))

    #  - EQUAL edges between the cells of the group columns and the corresponding cells in the output.
    #  - SUM/MEAN/COUNT edges between the cells of aggregated columns (or group columns in case of 'count') and the
    #    resulting cells in the output.
    agg_cols = [agg_col] if agg != "count" else group_cols
    for idx, group in enumerate(result.loc[:, group_cols].values):
        group = group[0] if len(group) == 1 else tuple(group)
        df_indices = result_groupby.groups[
            group]  # Get the indices in df that correspond to this group
        out_node = g_res.loc[result.index[idx], new_col]
        interm_node = graph.create_intermediate_node(out_node.value)
        added_edges.append(Edge(interm_node, out_node, ELabel.EQUAL))

        #  Aggregation edges
        for col in agg_cols:
            for val_node in g_df.loc[df_indices, col]:
                added_edges.append(
                    Edge(val_node, interm_node, getattr(ELabel, agg.upper())))

        #  Equality edges for group_col nodes
        for col in group_cols:
            group_node = g_res.loc[result.index[idx], col]
            for df_group_node in g_df.loc[df_indices, col]:
                added_edges.append(
                    Edge(df_group_node, group_node, ELabel.EQUAL))

    #  - EQUAL edge between the input deletion node and the output deletion node.
    added_edges.append(
        Edge(g_df.deletion_node, g_res.deletion_node, ELabel.EQUAL))

    #  - DELETE edges between the non-group cols and non-aggregated columns and their cells
    #    to the deletion node of the output.
    #  - DELETE edge between the column of the aggregated column (in case of sum/mean) and the deletion node
    #    of the output.
    non_group_cols = [c for c in df.columns if c not in group_cols]
    for col in non_group_cols:
        added_edges.append(
            Edge(col_map_df[col], g_res.deletion_node, ELabel.DELETE))
        if col != agg_col:
            for cell in g_df.loc[:, col]:
                added_edges.append(
                    Edge(cell, g_res.deletion_node, ELabel.DELETE))

    #  Add all the edges to the graph in one go.
    graph.add_nodes_and_edges(edges=added_edges)

    #  --------------------------------------------------------------------------------------------------------------  #
    #  Add information about arguments
    #  --------------------------------------------------------------------------------------------------------------  #
    tagged_edges: List[TaggedEdge] = []
    for c_node in cands_group_cols:
        if c_node.value in group_cols:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="SELECTED@group_by_group_cols"))
        else:
            tagged_edges.append(
                TaggedEdge(src=c_node,
                           dst=c_node,
                           tag="NOT_SELECTED@group_by_group_cols"))

    if cands_agg_col is not None:
        for c_node in cands_agg_col:
            if c_node.value == agg_col:
                tagged_edges.append(
                    TaggedEdge(src=c_node,
                               dst=c_node,
                               tag="SELECTED@summarise_col"))
            else:
                tagged_edges.append(
                    TaggedEdge(src=c_node,
                               dst=c_node,
                               tag="NOT_SELECTED@summarise_col"))

    graph.add_tags([
        f"SELECTED@{cand}@summarise_agg"
        if cand == agg else f"NOT_SELECTED@{cand}@summarise_agg"
        for cand in agg_cands
    ])
    graph.add_tagged_edges(tagged_edges)
    return result, call_str, graph, g_res
Пример #15
0
    def process_ui_interaction(
            self, inputs: Dict[str, Any],
            interactions: List[Dict]) -> Tuple[Any, Graph, Dict[str, Graph]]:

        value_interactions = [
            interaction for interaction in interactions
            if interaction['to'] != ""
        ]
        output_cells = [[int(r), int(c)]
                        for r, c, _ in (interaction['to'].split(':')
                                        for interaction in value_interactions)]
        if len(output_cells) > 0:
            row_nums, col_nums = list(zip(*output_cells))
        else:
            row_nums = []
            col_nums = []

        min_r, max_r = min([i for i in row_nums if i >= 0] +
                           [0]), max([i for i in row_nums if i >= 0] + [0])
        min_c, max_c = min(col_nums, default=0), max(col_nums, default=0)

        num_rows = max_r - min_r + 1
        num_cols = max_c - min_c + 1

        output = pd.DataFrame([[f"_CELL_{r}_{c}" for c in range(num_cols)]
                               for r in range(num_rows)],
                              columns=[f"_COL_{c}" for c in range(num_cols)])

        columns = list(output.columns)

        for interaction in value_interactions:
            value = interaction['value']
            r, c, _ = interaction['to'].split(':')
            r = int(r)
            c = int(c)
            if r == -1:
                columns[c - min_c] = value
            else:
                output.iloc[r - min_r, c - min_c] = value

        output.columns = columns

        graph = GraphRLang()
        g_inputs: Dict[str, DataFrameGraph] = {
            key: DataFrameGraph(inp)
            for key, inp in inputs.items()
        }
        g_output = DataFrameGraph(output)

        for g_inp in g_inputs.values():
            graph.merge(g_inp)

        graph.merge(g_output)

        for interaction in interactions:
            if interaction["labels"] == ["DELETE"]:
                node_to = g_output.deletion_node
                for r_from, c_from, inp_id in (i.split(':')
                                               for i in interaction['from']):
                    node_from = g_inputs[inp_id].get_node_xy(
                        int(r_from), int(c_from))
                    graph.add_edge(Edge(node_from, node_to, ELabel.DELETE))

                continue

            value = interaction['value']
            r_to, c_to, _ = interaction['to'].split(':')
            r_to = int(r_to)
            c_to = int(c_to)

            if r_to >= 0:
                r_to -= min_r
            c_to -= min_c

            if r_to == -1:
                actual_value = output.columns[c_to]
            else:
                actual_value = output.iloc[r_to, c_to]

            if _not_equal(actual_value, value):
                continue

            node_to = g_output.get_node_xy(r_to, c_to)
            node_from = _generate_computation_node(interaction, graph,
                                                   g_inputs)
            graph.add_edge(Edge(node_from, node_to, ELabel.EQUAL))

        return output, graph, g_inputs