Пример #1
0
 def test_invert_lambert(self):
     # Test if we can transform and transform back
     mu, sigma, delta = 0.5, 1.7, 0.33
     x = np.random.normal(loc=mu, scale=sigma, size=ns)
 
     y = g.inverse(x, (mu, sigma, delta))
     x_prime = g.w_t(y, (mu, sigma, delta))
     assert np.allclose(x, x_prime)
Пример #2
0
def test_invert_lambert():
    # Test if we can transform and transform back
    mu, sigma, delta = 0.5, 1.7, 0.33
    x = np.random.normal(loc=mu, scale=sigma, size=ns)

    y = g.inverse(x, (mu, sigma, delta))
    x_prime = g.w_t(y, (mu, sigma, delta))
    assert np.allclose(x, x_prime)
Пример #3
0
 def test_normality_increase_lambert(self):
     # Generate random data and check that it is more normal after inference
     for i, y in enumerate([np.random.standard_cauchy(size=ns), experimental_data]):
         print('Distribution %d' % i)
         print('Before')
         print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(y)[0], shapiro(y)[0])).expandtabs(30))
         stats.probplot(y, dist="norm", plot=plt)
         plt.savefig(os.path.join(self.test_dir, '%d_before.png' % i))
         plt.clf()
 
         tau = g.igmm(y)
         x = g.w_t(y, tau)
         print('After')
         print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(x)[0], shapiro(x)[0])).expandtabs(30))
         stats.probplot(x, dist="norm", plot=plt)
         plt.savefig(os.path.join(self.test_dir, '%d_after.png' % i))
         plt.clf()
Пример #4
0
def test_normality_increase_lambert():
    # Generate random data and check that it is more normal after inference
    for i, y in enumerate([np.random.standard_cauchy(size=ns), experimental_data]):
        print "Distribution %d" % i
        print "Before"
        print ("anderson: %0.3f\tshapiro: %0.3f" % (anderson(y)[0], shapiro(y)[0])).expandtabs(30)
        stats.probplot(y, dist="norm", plot=pylab)
        pylab.savefig("%d_before.png" % i)
        pylab.clf()

        tau = g.igmm(y)
        x = g.w_t(y, tau)
        print "After"
        print ("anderson: %0.3f\tshapiro: %0.3f" % (anderson(x)[0], shapiro(x)[0])).expandtabs(30)
        stats.probplot(x, dist="norm", plot=pylab)
        pylab.savefig("%d_after.png" % i)
        pylab.clf()