def graph_conv_cheby(self, x, W, L, lmax, Fout, K):

        # parameters
        # B = batch size
        # V = nb vertices
        # Fin = nb input features
        # Fout = nb output features
        # K = Chebyshev order & support size
        B, V, Fin = x.get_shape()
        B, V, Fin = int(B), int(V), int(Fin)
        print("fin", Fin)

        # rescale Laplacian
        lmax = lmaxX(L)
        L = rescale_L(L, lmax)

        # scipy sparse matric of L
        L = L.tocoo()
        indices = np.column_stack((L.row, L.col))
        L = tf.SparseTensor(indices, L.data, L.shape)
        L = tf.sparse_reorder(L)

        # Transform to Chebyshev basis
        x0 = tf.transpose(x, perm=[1, 2, 0])  # V x Fin x B
        x0 = tf.reshape(x0, [V, Fin * B])  # V x Fin*B
        x = tf.expand_dims(x0, 0)  # 1 x V x Fin*B

        def concat(x, x_):
            x_ = tf.expand_dims(x_, 0)  # 1 x V x Fin*B
            return tf.concat([x, x_], 0)  # K x V x Fin*B

        if K > 1:
            x1 = tf.sparse_tensor_dense_matmul(L, x0)
            x = concat(x, x1)
        for k in range(2, K):
            x2 = 2 * tf.sparse_tensor_dense_matmul(L, x1) - x0
            x = concat(x, x2)  # M x Fin*B
            x0, x1 = x1, x2
        x = tf.reshape(x, [K, V, Fin, B])  # K x V x Fin x B
        x = tf.transpose(x, perm=[3, 1, 2, 0])  # B x V x Fin x K
        print("xxxx", x)
        x = tf.reshape(x, [B * V, Fin * K])  # B*V x Fin*K

        # Compose linearly Fin features to get Fout features
        x = tf.matmul(x, W)  # B*V x Fout
        x = tf.reshape(x, [B, V, Fout])  # B x V x Fout

        return x
Пример #2
0
# Construct graph
t_start = time.time()
grid_side = 28
number_edges = 8
metric = 'euclidean'
A = grid_graph(grid_side,number_edges,metric) # create graph of Euclidean grid

# Compute coarsened graphs
coarsening_levels = 4
num_vertices, L, perm = coarsen(A, coarsening_levels)

# Compute max eigenvalue of graph Laplacians
lmax = []
for i in range(coarsening_levels):
    lmax.append(lmaxX(L[i]))
print('lmax: ' + str([lmax[i] for i in range(coarsening_levels)]))

train_data = tf.Session().run(train_data)
#comment this line for non rotated test images
test_data = tf.Session().run(test_data)

# Reindex nodes to satisfy a binary tree structure
train_data = perm_data(train_data, perm)
val_data = perm_data(val_data, perm)
test_data = perm_data(test_data, perm)

print(train_data.shape)
print(val_data.shape)
print(test_data.shape)