def tearDown(self): table_name = 'raw_prescribing_data_2016_01' try: BQClient('tmp_eu').delete_table(table_name) except NotFound: pass table = BQClient('hscic').get_table('prescribing') table.delete_all_rows() try: os.remove('frontend/tests/fixtures/commands/' + 'convert_hscic_prescribing/2016_01/' + 'Detailed_Prescribing_Information_formatted.CSV') except OSError: pass
def tearDown(self): table_name = "raw_prescribing_data_2016_01" try: BQClient("tmp_eu").delete_table(table_name) except NotFound: pass table = BQClient("hscic").get_table("prescribing_v2") table.delete_all_rows() try: os.remove("frontend/tests/fixtures/commands/" + "convert_hscic_prescribing/2016_01/" + "Detailed_Prescribing_Information_formatted.CSV") except OSError: pass
def test_data_is_aggregated(self): # there are 11 rows in the input file; 2 are for the same # practice/presentation and should be collapsed, and 1 is for # an UNKNONWN SURGERY (see issue #349) raw_data_path = ("frontend/tests/fixtures/commands/" + "convert_hscic_prescribing/2016_01/" + "EPD_201601.csv") gcs_path = "hscic/prescribing_v2/2016_01/EPD_201601.csv" client = StorageClient() bucket = client.get_bucket() blob = bucket.blob(gcs_path) with open(raw_data_path, "rb") as f: blob.upload_from_file(f) call_command("convert_hscic_prescribing", filename=raw_data_path) # Test that data added to prescribing table client = BQClient() sql = """SELECT * FROM {hscic}.prescribing_v2 WHERE month = TIMESTAMP('2016-01-01')""" rows = list(results_to_dicts(client.query(sql))) self.assertEqual(len(rows), 9) for row in rows: if row["practice"] == "P92042" and row[ "bnf_code"] == "0202010B0AAABAB": self.assertEqual(row["quantity"], 1288)
def update_bnf_table(): """Update `bnf` table from cloud-stored CSV""" storage_client = StorageClient() bucket = storage_client.get_bucket() blobs = bucket.list_blobs(prefix="hscic/bnf_codes/") blobs = sorted(blobs, key=lambda blob: blob.name, reverse=True) blob = blobs[0] bq_client = BQClient("hscic") table = bq_client.get_table("bnf") table.insert_rows_from_storage(blob.name, skip_leading_rows=1)
def test_data_is_aggregated(self): # there are 11 rows in the input file; 2 are for the same # practice/presentation and should be collapsed, and 1 is for # an UNKNONWN SURGERY (see issue #349) raw_data_path = 'frontend/tests/fixtures/commands/' +\ 'convert_hscic_prescribing/2016_01/' +\ 'Detailed_Prescribing_Information.csv' converted_data_path = 'frontend/tests/fixtures/commands/' +\ 'convert_hscic_prescribing/2016_01/' +\ 'Detailed_Prescribing_Information_formatted.CSV' gcs_path = 'hscic/prescribing/2016_01/' +\ 'Detailed_Prescribing_Information.csv' client = StorageClient() bucket = client.get_bucket() blob = bucket.blob(gcs_path) with open(raw_data_path) as f: blob.upload_from_file(f) call_command('convert_hscic_prescribing', filename=raw_data_path) # Test that data added to prescribing table client = BQClient() sql = '''SELECT * FROM {hscic}.prescribing WHERE month = TIMESTAMP('2016-01-01')''' rows = list(results_to_dicts(client.query(sql))) self.assertEqual(len(rows), 9) for row in rows: if row['practice'] == 'P92042' and \ row['bnf_code'] == '0202010B0AAABAB': self.assertEqual(row['quantity'], 1288) # Test that downloaded data is correct with open(converted_data_path) as f: rows = list(csv.reader(f)) self.assertEqual(len(rows), 9) for row in rows: if row[1] == 'P92042' and row[2] == '0202010B0AAABAB': self.assertEqual(row[6], '1288')
def handle(self, *args, **kwargs): update_bnf_table() client = BQClient("hscic") table = client.get_table("practices") table.insert_rows_from_pg(models.Practice, schemas.PRACTICE_SCHEMA) table = client.get_table("presentation") table.insert_rows_from_pg( models.Presentation, schemas.PRESENTATION_SCHEMA, transformer=schemas.presentation_transform, ) table = client.get_table("practice_statistics") columns = [field.name for field in schemas.PRACTICE_STATISTICS_SCHEMA] columns[0] = "date" columns[-1] = "practice_id" table.insert_rows_from_pg( models.PracticeStatistics, schema=schemas.PRACTICE_STATISTICS_SCHEMA, columns=columns, transformer=schemas.statistics_transform, ) sql = "SELECT MAX(month) FROM {hscic}.practice_statistics_all_years" results = client.query(sql) if results.rows[0][0] is None: last_uploaded_practice_statistics_date = datetime.date(1900, 1, 1) else: last_uploaded_practice_statistics_date = results.rows[0][0].date() table = client.get_table("practice_statistics_all_years") sql = """SELECT * FROM {hscic}.practice_statistics WHERE month > TIMESTAMP('{date}')""" substitutions = {"date": last_uploaded_practice_statistics_date} table.insert_rows_from_query(sql, write_disposition="WRITE_APPEND", substitutions=substitutions) table = client.get_table("pcns") table.insert_rows_from_pg(models.PCN, schemas.PCN_SCHEMA) table = client.get_table("ccgs") table.insert_rows_from_pg(models.PCT, schemas.CCG_SCHEMA, transformer=schemas.ccgs_transform) table = client.get_table("stps") table.insert_rows_from_pg(models.STP, schemas.STP_SCHEMA) table = client.get_table("regional_teams") table.insert_rows_from_pg(models.RegionalTeam, schemas.REGIONAL_TEAM_SCHEMA) date = models.ImportLog.objects.latest_in_category( "prescribing").current_at table = client.get_table("prescribing_" + date.strftime("%Y_%m")) sql = """SELECT * FROM {hscic}.prescribing_v2 WHERE month = TIMESTAMP('{date}')""" substitutions = {"date": date} table.insert_rows_from_query(sql, substitutions=substitutions)
def handle(self, *args, **kwargs): # Make sure that PracticeStatistics and Prescription tables both have # latest data. latest_practice_statistic_date = models.PracticeStatistics.objects.aggregate( Max("date"))["date__max"] latest_prescription_date = models.Prescription.objects.aggregate( Max("processing_date"))["processing_date__max"] if latest_practice_statistic_date != latest_prescription_date: msg = ("Latest PracticeStatistics object has date {}, " "while latest Prescription object has processing_date {}". format(latest_practice_statistic_date, latest_prescription_date)) raise CommandError(msg) date = latest_prescription_date update_bnf_table() client = BQClient("hscic") table = client.get_table("practices") table.insert_rows_from_pg(models.Practice, schemas.PRACTICE_SCHEMA) table = client.get_table("presentation") table.insert_rows_from_pg( models.Presentation, schemas.PRESENTATION_SCHEMA, transformer=schemas.presentation_transform, ) table = client.get_table("practice_statistics") columns = [field.name for field in schemas.PRACTICE_STATISTICS_SCHEMA] columns[0] = "date" columns[-1] = "practice_id" table.insert_rows_from_pg( models.PracticeStatistics, schema=schemas.PRACTICE_STATISTICS_SCHEMA, columns=columns, transformer=schemas.statistics_transform, ) sql = "SELECT MAX(month) FROM {hscic}.practice_statistics_all_years" results = client.query(sql) if results.rows[0][0] is None: last_uploaded_practice_statistics_date = datetime.date(1900, 1, 1) else: last_uploaded_practice_statistics_date = results.rows[0][0].date() table = client.get_table("practice_statistics_all_years") sql = """SELECT * FROM {hscic}.practice_statistics WHERE month > TIMESTAMP('{date}')""" substitutions = {"date": last_uploaded_practice_statistics_date} table.insert_rows_from_query(sql, write_disposition="WRITE_APPEND", substitutions=substitutions) table = client.get_table("ccgs") table.insert_rows_from_pg(models.PCT, schemas.CCG_SCHEMA, transformer=schemas.ccgs_transform) table = client.get_table("stps") table.insert_rows_from_pg(models.STP, schemas.STP_SCHEMA) table = client.get_table("regional_teams") table.insert_rows_from_pg(models.RegionalTeam, schemas.REGIONAL_TEAM_SCHEMA) table = client.get_table("prescribing_" + date.strftime("%Y_%m")) sql = """SELECT * FROM {hscic}.prescribing WHERE month = TIMESTAMP('{date}')""" substitutions = {"date": date} table.insert_rows_from_query(sql, substitutions=substitutions)
def setUp(self): client = BQClient("hscic") client.get_or_create_table("prescribing", PRESCRIBING_SCHEMA)
def handle(self, *args, **kwargs): # Make sure that PracticeStatistics and Prescription tables both have # latest data. latest_practice_statistic_date = models.PracticeStatistics.objects\ .aggregate(Max('date'))['date__max'] latest_prescription_date = models.Prescription.objects\ .aggregate(Max('processing_date'))['processing_date__max'] if latest_practice_statistic_date != latest_prescription_date: msg = 'Latest PracticeStatistics object has date {}, '\ 'while latest Prescription object has processing_date {}'\ .format(latest_practice_statistic_date, latest_prescription_date) raise CommandError(msg) date = latest_prescription_date update_bnf_table() client = BQClient('hscic') table = client.get_table('practices') columns = [field.name for field in schemas.PRACTICE_SCHEMA] table.insert_rows_from_pg(models.Practice, columns) table = client.get_table('presentation') columns = [field.name for field in schemas.PRESENTATION_SCHEMA] table.insert_rows_from_pg(models.Presentation, columns, schemas.presentation_transform) table = client.get_table('practice_statistics') columns = [field.name for field in schemas.PRACTICE_STATISTICS_SCHEMA] columns[0] = 'date' columns[-1] = 'practice_id' table.insert_rows_from_pg(models.PracticeStatistics, columns, schemas.statistics_transform) sql = 'SELECT MAX(month) FROM {hscic}.practice_statistics_all_years' results = client.query(sql) if results.rows[0][0] is None: last_uploaded_practice_statistics_date = datetime.date(1900, 1, 1) else: last_uploaded_practice_statistics_date = results.rows[0][0].date() table = client.get_table('practice_statistics_all_years') sql = '''SELECT month, pct_id, practice, male_0_4, female_0_4, male_5_14, female_5_14, male_15_24, female_15_24, male_25_34, female_25_34, male_35_44, female_35_44, male_45_54, female_45_54, male_55_64, female_55_64, male_65_74, female_65_74, male_75_plus, female_75_plus, total_list_size FROM {hscic}.practice_statistics WHERE month > TIMESTAMP('{date}')''' substitutions = {'date': last_uploaded_practice_statistics_date} table.insert_rows_from_query(sql, write_disposition='WRITE_APPEND', substitutions=substitutions) table = client.get_table('ccgs') columns = [field.name for field in schemas.CCG_SCHEMA] table.insert_rows_from_pg(models.PCT, columns, schemas.ccgs_transform) table = client.get_table('ppu_savings') columns = [field.name for field in PPU_SAVING_SCHEMA] table.insert_rows_from_pg(PPUSaving, columns, ppu_savings_transform) table = client.get_table('prescribing_' + date.strftime('%Y_%m')) sql = '''SELECT * FROM {hscic}.prescribing WHERE month = TIMESTAMP('{date}')''' substitutions = {'date': date} table.insert_rows_from_query(sql, substitutions=substitutions)
def run_end_to_end(): print('BQ_NONCE: {}'.format(settings.BQ_NONCE)) call_command('migrate') path = os.path.join(settings.APPS_ROOT, 'frontend', 'management', 'commands', 'measure_definitions') # No MeasureGlobals or MeasureValues are generated for the ghost branded # generics measure, because both numerator and denominator are computed # from a view (vw__ghost_generic_measure) which has no data. Rather than # populate this view, it is simpler to pretend it doesn't exist. num_measures = len(os.listdir(path)) - 1 shutil.rmtree(settings.PIPELINE_DATA_BASEDIR, ignore_errors=True) with open(settings.PIPELINE_IMPORT_LOG_PATH, 'w') as f: f.write('{}') for blob in StorageClient().bucket().list_blobs(): blob.delete() for dataset_key in DATASETS: BQClient(dataset_key).create_dataset() client = BQClient('hscic') client.create_table('bnf', schemas.BNF_SCHEMA) client.create_table('ccgs', schemas.CCG_SCHEMA) client.create_table('ppu_savings', schemas.PPU_SAVING_SCHEMA) client.create_table( 'practice_statistics', schemas.PRACTICE_STATISTICS_SCHEMA ) client.create_table( 'practice_statistics_all_years', schemas.PRACTICE_STATISTICS_SCHEMA ) client.create_table('practices', schemas.PRACTICE_SCHEMA) client.create_table('prescribing', schemas.PRESCRIBING_SCHEMA) client.create_table('presentation', schemas.PRESENTATION_SCHEMA) client.create_table('tariff', schemas.TARIFF_SCHEMA) client.create_table('bdz_adq', schemas.BDZ_ADQ_SCHEMA) client = BQClient('measures') # This is enough of a schema to allow the practice_data_all_low_priority # table to be created, since it references these fields. Once populated by # import_measures, the tables in the measures dataset will have several # more fields. But we don't need to specify exactly what they are, as BQ # will work it out when the data is inserted with insert_rows_from_query. measures_schema = build_schema( ('month', 'DATE'), ('practice_id', 'STRING'), ('numerator', 'INTEGER'), ('denominator', 'INTEGER'), ) path = os.path.join(settings.APPS_ROOT, 'frontend', 'management', 'commands', 'measure_definitions', '*.json') for path in glob.glob(path): measure_id = os.path.splitext(os.path.basename(path))[0] client.create_table('practice_data_' + measure_id, measures_schema) client.create_table('ccg_data_' + measure_id, measures_schema) client.create_table('global_data_' + measure_id, measures_schema) # Although there are no model instances, we call upload_model to create the # tables in BQ that might be required by certain measure views. client = BQClient('dmd') client.upload_model(TariffPrice) client.upload_model(VMPP) call_command('generate_presentation_replacements') path = os.path.join(settings.APPS_ROOT, 'frontend', 'management', 'commands', 'replace_matviews.sql') with open(path) as f: with connection.cursor() as c: c.execute(f.read()) copy_tree( os.path.join(e2e_path, 'data-1'), os.path.join(e2e_path, 'data'), ) runner.run_all(2017, 9, under_test=True) # We expect one MeasureGlobal per measure per month. assert_count_equal(num_measures, MeasureGlobal) # We expect one MeasureValue for each organisation per measure per month # (There are 4 practices, 2 CCGs, 2 STPs, and 2 regional teams). assert_count_equal(10 * num_measures, MeasureValue) # We expect one statistic per CCG per month assert_raw_count_equal(2, 'vw__ccgstatistics') # We expect one chemical summary per CCG per month assert_raw_count_equal(2, 'vw__chemical_summary_by_ccg', "chemical_id = '1001030C0'") # We expect one chemical summary per practice per month assert_raw_count_equal(4, 'vw__chemical_summary_by_practice', "chemical_id = '1001030C0'") # We expect one summary per practice per month assert_raw_count_equal(4, 'vw__practice_summary') # We expect one presentation summary per month assert_raw_count_equal(1, 'vw__presentation_summary', "presentation_code = '1001030C0AAAAAA'") # We expect one presentation summary per CCG per month assert_raw_count_equal(2, 'vw__presentation_summary_by_ccg', "presentation_code = '1001030C0AAAAAA'") copy_tree( os.path.join(e2e_path, 'data-2'), os.path.join(e2e_path, 'data'), ) runner.run_all(2017, 10, under_test=True) # We expect one MeasureGlobal per measure per month assert_count_equal(2 * num_measures, MeasureGlobal) # We expect one MeasureValue for each organisation per measure per month assert_count_equal(20 * num_measures, MeasureValue) # We expect one statistic per CCG per month assert_raw_count_equal(4, 'vw__ccgstatistics') # We expect one chemical summary per CCG per month assert_raw_count_equal(4, 'vw__chemical_summary_by_ccg', "chemical_id = '1001030C0'") # We expect one chemical summary per practice per month assert_raw_count_equal(8, 'vw__chemical_summary_by_practice', "chemical_id = '1001030C0'") # We expect one summary per practice per month assert_raw_count_equal(8, 'vw__practice_summary') # We expect one presentation summary per month assert_raw_count_equal(2, 'vw__presentation_summary', "presentation_code = '1001030C0AAAAAA'") # We expect one presentation summary per CCG per month assert_raw_count_equal(4, 'vw__presentation_summary_by_ccg', "presentation_code = '1001030C0AAAAAA'")
def run_end_to_end(): print("BQ_NONCE: {}".format(settings.BQ_NONCE)) call_command("migrate") # No MeasureGlobals or MeasureValues are generated for the ghost branded # generics measure, because both numerator and denominator are computed # from a view (vw__ghost_generic_measure) which has no data. Rather than # populate this view, it is simpler to pretend it doesn't exist. num_measures = (len( glob.glob(os.path.join(settings.MEASURE_DEFINITIONS_PATH, "*.json"))) - 1) shutil.rmtree(settings.PIPELINE_DATA_BASEDIR, ignore_errors=True) with open(settings.PIPELINE_IMPORT_LOG_PATH, "w") as f: f.write("{}") for blob in StorageClient().bucket().list_blobs(): blob.delete() for dataset_key in DATASETS: BQClient(dataset_key).create_dataset() client = BQClient("hscic") client.create_table("bnf", schemas.BNF_SCHEMA) client.create_table("ccgs", schemas.CCG_SCHEMA) client.create_table("stps", schemas.STP_SCHEMA) client.create_table("regional_teams", schemas.REGIONAL_TEAM_SCHEMA) client.create_table("ppu_savings", schemas.PPU_SAVING_SCHEMA) client.create_table("practice_statistics", schemas.PRACTICE_STATISTICS_SCHEMA) client.create_table("practice_statistics_all_years", schemas.PRACTICE_STATISTICS_SCHEMA) client.create_table("practices", schemas.PRACTICE_SCHEMA) client.create_table("prescribing", schemas.PRESCRIBING_SCHEMA) client.create_table("presentation", schemas.PRESENTATION_SCHEMA) client.create_table("tariff", schemas.TARIFF_SCHEMA) client.create_table("bdz_adq", schemas.BDZ_ADQ_SCHEMA) client = BQClient("measures") # This is enough of a schema to allow the practice_data_all_low_priority # table to be created, since it references these fields. Once populated by # import_measures, the tables in the measures dataset will have several # more fields. But we don't need to specify exactly what they are, as BQ # will work it out when the data is inserted with insert_rows_from_query. measures_schema = build_schema( ("month", "DATE"), ("practice_id", "STRING"), ("numerator", "INTEGER"), ("denominator", "INTEGER"), ) for path in glob.glob( os.path.join(settings.MEASURE_DEFINITIONS_PATH, "*.json")): measure_id = os.path.splitext(os.path.basename(path))[0] client.create_table("practice_data_" + measure_id, measures_schema) client.create_table("ccg_data_" + measure_id, measures_schema) client.create_table("global_data_" + measure_id, measures_schema) # Although there are no model instances, we call upload_model to create the # dm+d tables in BQ that are required by certain measure views. client = BQClient("dmd") for model in apps.get_app_config("dmd2").get_models(): client.upload_model(model) call_command("generate_presentation_replacements") copy_tree(os.path.join(e2e_path, "data-1"), os.path.join(e2e_path, "data")) runner.run_all(2017, 9, under_test=True) # We expect one MeasureGlobal per measure per month. assert_count_equal(num_measures, MeasureGlobal) # We expect one MeasureValue for each organisation per measure per month # (There are 4 practices, 2 CCGs, 2 STPs, and 2 regional teams). assert_count_equal(10 * num_measures, MeasureValue) copy_tree(os.path.join(e2e_path, "data-2"), os.path.join(e2e_path, "data")) runner.run_all(2017, 10, under_test=True) # We expect one MeasureGlobal per measure per month assert_count_equal(2 * num_measures, MeasureGlobal) # We expect one MeasureValue for each organisation per measure per month assert_count_equal(20 * num_measures, MeasureValue)
def run_end_to_end(): print('BQ_NONCE: {}'.format(settings.BQ_NONCE)) num_measures = 56 shutil.rmtree(settings.PIPELINE_DATA_BASEDIR, ignore_errors=True) with open(settings.PIPELINE_IMPORT_LOG_PATH, 'w') as f: f.write('{}') for blob in StorageClient().bucket().list_blobs(): blob.delete() for dataset_key in DATASETS: BQClient(dataset_key).create_dataset() client = BQClient('hscic') client.create_table('bnf', schemas.BNF_SCHEMA) client.create_table('ccgs', schemas.CCG_SCHEMA) client.create_table('ppu_savings', schemas.PPU_SAVING_SCHEMA) client.create_table( 'practice_statistics', schemas.PRACTICE_STATISTICS_SCHEMA ) client.create_table( 'practice_statistics_all_years', schemas.PRACTICE_STATISTICS_SCHEMA ) client.create_table('practices', schemas.PRACTICE_SCHEMA) client.create_table('prescribing', schemas.PRESCRIBING_SCHEMA) client.create_table('presentation', schemas.PRESENTATION_SCHEMA) client.create_table('tariff', schemas.TARIFF_SCHEMA) call_command('generate_presentation_replacements') path = os.path.join(settings.SITE_ROOT, 'frontend', 'management', 'commands', 'replace_matviews.sql') with open(path) as f: with connection.cursor() as c: c.execute(f.read()) copy_tree( os.path.join(e2e_path, 'data-1'), os.path.join(e2e_path, 'data'), ) runner.run_all(2017, 9, under_test=True) # We expect one MeasureGlobal per measure per month. If this assert fails, # check that num_measures is still correct. assert_count_equal(num_measures, MeasureGlobal) # We expect one MeasureValue for each CCG or Practice per measure per month assert_count_equal(6 * num_measures, MeasureValue) # We expect one statistic per CCG per month assert_raw_count_equal(2, 'vw__ccgstatistics') # We expect one chemical summary per CCG per month assert_raw_count_equal(2, 'vw__chemical_summary_by_ccg', "chemical_id = '1001030C0'") # We expect one chemical summary per practice per month assert_raw_count_equal(4, 'vw__chemical_summary_by_practice', "chemical_id = '1001030C0'") # We expect one summary per practice per month assert_raw_count_equal(4, 'vw__practice_summary') # We expect one presentation summary per month assert_raw_count_equal(1, 'vw__presentation_summary', "presentation_code = '1001030C0AAAAAA'") # We expect one presentation summary per CCG per month assert_raw_count_equal(2, 'vw__presentation_summary_by_ccg', "presentation_code = '1001030C0AAAAAA'") copy_tree( os.path.join(e2e_path, 'data-2'), os.path.join(e2e_path, 'data'), ) runner.run_all(2017, 10, under_test=True) # We expect one MeasureGlobal per measure per month assert_count_equal(2 * num_measures, MeasureGlobal) # We expect one MeasureValue for each CCG or Practice per measure per month assert_count_equal(12 * num_measures, MeasureValue) # We expect one statistic per CCG per month assert_raw_count_equal(4, 'vw__ccgstatistics') # We expect one chemical summary per CCG per month assert_raw_count_equal(4, 'vw__chemical_summary_by_ccg', "chemical_id = '1001030C0'") # We expect one chemical summary per practice per month assert_raw_count_equal(8, 'vw__chemical_summary_by_practice', "chemical_id = '1001030C0'") # We expect one summary per practice per month assert_raw_count_equal(8, 'vw__practice_summary') # We expect one presentation summary per month assert_raw_count_equal(2, 'vw__presentation_summary', "presentation_code = '1001030C0AAAAAA'") # We expect one presentation summary per CCG per month assert_raw_count_equal(4, 'vw__presentation_summary_by_ccg', "presentation_code = '1001030C0AAAAAA'")
def run_end_to_end(): print('BQ_NONCE: {}'.format(settings.BQ_NONCE)) num_measures = 57 shutil.rmtree(settings.PIPELINE_DATA_BASEDIR, ignore_errors=True) with open(settings.PIPELINE_IMPORT_LOG_PATH, 'w') as f: f.write('{}') for blob in StorageClient().bucket().list_blobs(): blob.delete() for dataset_key in DATASETS: BQClient(dataset_key).create_dataset() client = BQClient('hscic') client.create_table('bnf', schemas.BNF_SCHEMA) client.create_table('ccgs', schemas.CCG_SCHEMA) client.create_table('ppu_savings', schemas.PPU_SAVING_SCHEMA) client.create_table('practice_statistics', schemas.PRACTICE_STATISTICS_SCHEMA) client.create_table('practice_statistics_all_years', schemas.PRACTICE_STATISTICS_SCHEMA) client.create_table('practices', schemas.PRACTICE_SCHEMA) client.create_table('prescribing', schemas.PRESCRIBING_SCHEMA) client.create_table('presentation', schemas.PRESENTATION_SCHEMA) client.create_table('tariff', schemas.TARIFF_SCHEMA) client = BQClient('measures') # This is enough of a schema to allow the practice_data_all_low_priority # table to be created, since it references these fields. Once populated by # import_measures, the tables in the measures dataset will have several # more fields. But we don't need to specify exactly what they are, as BQ # will work it out when the data is inserted with insert_rows_from_query. measures_schema = build_schema( ('month', 'DATE'), ('practice_id', 'STRING'), ('numerator', 'INTEGER'), ('denominator', 'INTEGER'), ) path = os.path.join(settings.SITE_ROOT, 'frontend', 'management', 'commands', 'measure_definitions', '*.json') for path in glob.glob(path): measure_id = os.path.splitext(os.path.basename(path))[0] client.create_table('practice_data_' + measure_id, measures_schema) client.create_table('ccg_data_' + measure_id, measures_schema) client.create_table('global_data_' + measure_id, measures_schema) call_command('generate_presentation_replacements') path = os.path.join(settings.SITE_ROOT, 'frontend', 'management', 'commands', 'replace_matviews.sql') with open(path) as f: with connection.cursor() as c: c.execute(f.read()) copy_tree( os.path.join(e2e_path, 'data-1'), os.path.join(e2e_path, 'data'), ) runner.run_all(2017, 9, under_test=True) # We expect one MeasureGlobal per measure per month. If this assert fails, # check that num_measures is still correct. assert_count_equal(num_measures, MeasureGlobal) # We expect one MeasureValue for each CCG or Practice per measure per month assert_count_equal(6 * num_measures, MeasureValue) # We expect one statistic per CCG per month assert_raw_count_equal(2, 'vw__ccgstatistics') # We expect one chemical summary per CCG per month assert_raw_count_equal(2, 'vw__chemical_summary_by_ccg', "chemical_id = '1001030C0'") # We expect one chemical summary per practice per month assert_raw_count_equal(4, 'vw__chemical_summary_by_practice', "chemical_id = '1001030C0'") # We expect one summary per practice per month assert_raw_count_equal(4, 'vw__practice_summary') # We expect one presentation summary per month assert_raw_count_equal(1, 'vw__presentation_summary', "presentation_code = '1001030C0AAAAAA'") # We expect one presentation summary per CCG per month assert_raw_count_equal(2, 'vw__presentation_summary_by_ccg', "presentation_code = '1001030C0AAAAAA'") copy_tree( os.path.join(e2e_path, 'data-2'), os.path.join(e2e_path, 'data'), ) runner.run_all(2017, 10, under_test=True) # We expect one MeasureGlobal per measure per month assert_count_equal(2 * num_measures, MeasureGlobal) # We expect one MeasureValue for each CCG or Practice per measure per month assert_count_equal(12 * num_measures, MeasureValue) # We expect one statistic per CCG per month assert_raw_count_equal(4, 'vw__ccgstatistics') # We expect one chemical summary per CCG per month assert_raw_count_equal(4, 'vw__chemical_summary_by_ccg', "chemical_id = '1001030C0'") # We expect one chemical summary per practice per month assert_raw_count_equal(8, 'vw__chemical_summary_by_practice', "chemical_id = '1001030C0'") # We expect one summary per practice per month assert_raw_count_equal(8, 'vw__practice_summary') # We expect one presentation summary per month assert_raw_count_equal(2, 'vw__presentation_summary', "presentation_code = '1001030C0AAAAAA'") # We expect one presentation summary per CCG per month assert_raw_count_equal(4, 'vw__presentation_summary_by_ccg', "presentation_code = '1001030C0AAAAAA'")
def setUp(self): client = BQClient('hscic') table = client.get_or_create_table('prescribing', PRESCRIBING_SCHEMA)