def process_gd_algo(self, res_file): start = time.clock() train, train_index = self._get_train() test, test_index = self._get_test() gd = GDAlgorithm() res = gd.process(train, test, test_index) with open(res_file, "w") as f: for r in res: f.write('{} {} {}\n'.format(r[0], r[1], r[2])) end = time.clock() print "[log] process Matrix Decompose algorithm done, time spent %0.2f seconds." % (end - start)
def process_gd_algo(self, res_file): start = time.clock() train, train_index = self._get_train() test, test_index = self._get_test() gd = GDAlgorithm() res = gd.process(train, test, test_index) with open(res_file, "w") as f: for r in res: f.write('{} {} {}\n'.format(r[0], r[1], r[2])) end = time.clock() print "[log] process Matrix Decompose algorithm done, time spent %0.2f seconds." % ( end - start)
def compare_kr(self, res_file): train, train_index = self._get_train() test, test_index = self._get_test() res_list = [] ks = [10, 20, 30, 40, 50, 60, 70] rs = [0.001, 0.01, 0.025, 0.05, 0.075, 0.10] for k in ks: r = 0.01 gd = GDAlgorithm(k=k, lamb=r, compare=True) res = gd.process(train, test, test_index) res_list.append((k, res[len(res)-1][2])) for r in rs: k = 50 gd = GDAlgorithm(k=k, lamb=r, compare=True) res = gd.process(train, test, test_index) res_list.append((r, res[len(res)-1][2])) with open(res_file, "w") as f: for r in res_list: f.write('{} {}\n'.format(r[0], r[1]))
def compare_kr(self, res_file): train, train_index = self._get_train() test, test_index = self._get_test() res_list = [] ks = [10, 20, 30, 40, 50, 60, 70] rs = [0.001, 0.01, 0.025, 0.05, 0.075, 0.10] for k in ks: r = 0.01 gd = GDAlgorithm(k=k, lamb=r, compare=True) res = gd.process(train, test, test_index) res_list.append((k, res[len(res) - 1][2])) for r in rs: k = 50 gd = GDAlgorithm(k=k, lamb=r, compare=True) res = gd.process(train, test, test_index) res_list.append((r, res[len(res) - 1][2])) with open(res_file, "w") as f: for r in res_list: f.write('{} {}\n'.format(r[0], r[1]))