Пример #1
0
class Translator(object):
    def __init__(self, gdx_file, gams_dir=None, lazy_load=False):
        self.__gdx = GdxFile(gams_dir=gams_dir, lazy_load=lazy_load)
        self.__gdx.read(gdx_file)
        self.__dataframes = None

    def __exit__(self, *args):
        self.__gdx.__exit__(self, *args)

    def __del__(self):
        self.__gdx.__del__()

    @property
    def gams_dir(self):
        return self.gdx.gams_dir

    @gams_dir.setter
    def gams_dir(self, value):
        self.gdx.gams_dir = value

    @property
    def gdx_file(self):
        return self.gdx.filename

    @gdx_file.setter
    def gdx_file(self, value):
        self.__gdx.__del__()
        self.__gdx = GdxFile(gams_dir=self.gdx.gams_dir,
                             lazy_load=self.gdx.lazy_load)
        self.__gdx.read(value)
        self.__dataframes = None

    @property
    def gdx(self):
        return self.__gdx

    @property
    def dataframes(self):
        if self.__dataframes is None:
            self.__dataframes = OrderedDict()
            for symbol in self.__gdx:
                if not symbol.loaded:
                    symbol.load()
                self.__dataframes[symbol.name] = symbol.dataframe.copy()
        return self.__dataframes

    @property
    def symbols(self):
        return [symbol_name for symbol_name in self.gdx]

    def dataframe(self, symbol_name):
        if not symbol_name in self.gdx:
            raise Error("No symbol named '{}' in '{}'.".format(
                symbol_name, self.gdx_file))
        if not self.gdx[symbol_name].loaded:
            self.gdx[symbol_name].load()
        # This was returning { symbol_name: dataframe }, which seems intuitively off.
        return self.gdx[symbol_name].dataframe.copy()
Пример #2
0
    def collect_results(self):
        result_file = os.path.join(self.outdir, 'MatchGenerationMix_p.gdx')
        if not os.path.exists(result_file):
            return False

        from gdxpds.gdx import GdxFile
        with GdxFile() as p_gdx:
            p_gdx.read(result_file)

            variables = [
                ('Capacity', self.request.generators_columns()),
                ('CapacityAdded', self.request.generators_columns()),
                ('CapacityKept', self.request.generators_columns()),
                ('CapacitySwapped', self.request.generators_swapped_columns()),
                ('CapacityRemoved', self.request.generators_columns()),
                ('Distance', ['Level'])
            ]

            capacity_column = self.request.generators_columns()[-1]

            args = []
            for variable_name, column_names in variables:
                p_gdx[variable_name].load()
                tmp = p_gdx[variable_name].dataframe.iloc[:, :(
                    len(column_names))]
                tmp.columns = column_names
                # clear out 0 capacity entries
                if capacity_column in tmp.columns:
                    tmp = tmp[tmp[capacity_column] > 0.0]
                args.append(tmp)

            args[-1] = args[-1]['Level'].values[0]
            self.request.register_results(*args)

        return True
Пример #3
0
 def gdx(self):
     if self.__gdx is None:
         self.__gdx = GdxFile(gams_dir=self.__gams_dir)
         for symbol_name, df in self.dataframes.items():
             self.__add_symbol_to_gdx(symbol_name, df)
     return self.__gdx
Пример #4
0
class Translator(object):
    def __init__(self, dataframes, gams_dir=None):
        self.dataframes = dataframes
        self.__gams_dir = None

    def __exit__(self, *args):
        if self.__gdx is not None:
            self.__gdx.__exit__(self, *args)

    def __del__(self):
        if self.__gdx is not None:
            self.__gdx.__del__()

    @property
    def dataframes(self):
        return self.__dataframes

    @dataframes.setter
    def dataframes(self, value):
        err_msg = "Expecting map of name, pandas.DataFrame pairs."
        try:
            for symbol_name, df in value.items():
                if not isinstance(symbol_name, str): raise Error(err_msg)
                if not isinstance(df, pds.DataFrame): raise Error(err_msg)
        except AttributeError:
            raise Error(err_msg)
        self.__dataframes = value
        self.__gdx = None

    @property
    def gams_dir(self):
        return self.__gams_dir

    @gams_dir.setter
    def gams_dir(self, value):
        self.__gams_dir = value

    @property
    def gdx(self):
        if self.__gdx is None:
            self.__gdx = GdxFile(gams_dir=self.__gams_dir)
            for symbol_name, df in self.dataframes.items():
                self.__add_symbol_to_gdx(symbol_name, df)
        return self.__gdx

    def save_gdx(self, path, gams_dir=None):
        if gams_dir is not None:
            self.__gams_dir = gams_dir
        self.gdx.write(path)

    def __add_symbol_to_gdx(self, symbol_name, df):
        data_type, num_dims = self.__infer_data_type(symbol_name, df)
        logger.info("Inferred data type of {} to be {}.".format(
            symbol_name, data_type.name))

        self.__gdx.append(GdxSymbol(symbol_name, data_type, dims=num_dims))
        self.__gdx[symbol_name].dataframe = df
        return

    def __infer_data_type(self, symbol_name, df):
        """
        Returns
        -------
        (gdxpds.GamsDataType, int)
            symbol type and number of dimensions implied by df
        """
        # See if structure implies that symbol_name may be a Variable or an Equation
        # If so, break tie based on naming convention--Variables start with upper case,
        # equations start with lower case
        var_or_eqn = False
        df_col_names = df.columns
        var_eqn_col_names = [
            col_name
            for col_name, col_ind in GAMS_VALUE_COLS_MAP[GamsDataType.Variable]
        ]
        if len(df_col_names) >= len(var_eqn_col_names):
            # might be variable or equation
            var_or_eqn = True
            trunc_df_col_names = df_col_names[len(df_col_names) -
                                              len(var_eqn_col_names):]
            for i, df_col in enumerate(trunc_df_col_names):
                if df_col and (df_col.lower() != var_eqn_col_names[i].lower()):
                    var_or_eqn = False
                    break
            if var_or_eqn:
                num_dims = len(df_col_names) - len(var_eqn_col_names)
                if symbol_name[0].upper() == symbol_name[0]:
                    return GamsDataType.Variable, num_dims
                else:
                    return GamsDataType.Equation, num_dims

        # Parameter or set
        num_dims = len(df_col_names) - 1
        if len(df.index) > 0:
            if isinstance(df.loc[df.index[0], df.columns[-1]], Number):
                return GamsDataType.Parameter, num_dims
        return GamsDataType.Set, num_dims
Пример #5
0
    def setup(self, gendists=None, precision=0):
        gendists_df, desired_capacity_df = super().setup(gendists=gendists,
                                                         precision=precision)

        from gdxpds.gdx import GdxFile, GdxSymbol, GamsDataType
        with GdxFile() as ingdx:
            # Sets
            ingdx.append(GdxSymbol('n', GamsDataType.Set, dims=['n']))
            df = pds.DataFrame(self.request.nodes['node_id'])
            df['Value'] = True
            ingdx[-1].dataframe = df

            ingdx.append(GdxSymbol('g', GamsDataType.Set, dims=['g']))
            df = pds.DataFrame([[g, True] for g in self.request.gentypes],
                               columns=['g', 'Value'])
            ingdx[-1].dataframe = df

            ingdx.append(GdxSymbol('g_indep', GamsDataType.Set, dims=['g']))
            df = pds.DataFrame([[g, True] for g in self.request.gentypes
                                if g in self.request.RESOURCE_INDEPENDENT],
                               columns=['g', 'Value'])
            ingdx[-1].dataframe = df

            ingdx.append(GdxSymbol('g_dep', GamsDataType.Set, dims=['g']))
            df = pds.DataFrame([[g, True] for g in self.request.gentypes
                                if g not in self.request.RESOURCE_INDEPENDENT],
                               columns=['g', 'Value'])
            ingdx[-1].dataframe = df

            # Parameters
            ingdx.append(
                GdxSymbol('desired_capacity',
                          GamsDataType.Parameter,
                          dims=['g']))
            ingdx[-1].dataframe = desired_capacity_df

            ingdx.append(
                GdxSymbol('current_capacity',
                          GamsDataType.Parameter,
                          dims=['n', 'g']))
            # pivot with sum on capacity in case there are multiple units of type g at node n
            df = pds.pivot_table(self.request.generators,
                                 values='capacity (MW)',
                                 index=['node_id', 'generator type'],
                                 aggfunc=np.sum)
            df = df.reset_index()
            df.columns = ['n', 'g', 'Value']
            ingdx[-1].dataframe = df

            ingdx.append(
                GdxSymbol('g_dist', GamsDataType.Parameter, dims=['g', 'gg']))
            ingdx[-1].dataframe = gendists_df

            ingdx.append(
                GdxSymbol('current_indep_capacity',
                          GamsDataType.Parameter,
                          dims=['n']))
            df = pds.pivot_table(self.request.generators[
                self.request.generators['generator type'].isin(
                    self.request.RESOURCE_INDEPENDENT)],
                                 values='capacity (MW)',
                                 index=['node_id'],
                                 aggfunc=np.sum)
            df = df.reset_index()
            df.columns = ['n', 'Value']
            ingdx[-1].dataframe = df

            ingdx.append(
                GdxSymbol('maximum_capacity',
                          GamsDataType.Parameter,
                          dims=['n', 'g_dep']))
            data = []
            for g in self.request.gentypes:
                if g in self.request.RESOURCE_INDEPENDENT:
                    continue
                if g in self.request.nodes:
                    tmp = pds.DataFrame(self.request.nodes['node_id'])
                    tmp['g_dep'] = g
                    tmp['Value'] = self.request.nodes[g]
                    data.append(tmp)
            df = pds.concat(data)
            df.columns = ['n', 'g_dep', 'Value']
            ingdx[-1].dataframe = df

            ingdx.write(os.path.join(self.outdir, 'in.gdx'))
Пример #6
0
 def gdx_file(self, value):
     self.__gdx.__del__()
     self.__gdx = GdxFile(gams_dir=self.gdx.gams_dir,
                          lazy_load=self.gdx.lazy_load)
     self.__gdx.read(value)
     self.__dataframes = None
Пример #7
0
 def __init__(self, gdx_file, gams_dir=None, lazy_load=False):
     self.__gdx = GdxFile(gams_dir=gams_dir, lazy_load=lazy_load)
     self.__gdx.read(gdx_file)
     self.__dataframes = None