Пример #1
0
def main():
    teams = []
    teamList = gen.readTeamListCsv(2018)['Teams']
    pool = Pool()
    teams += pool.map(getTeamData, teamList)

    teams = sorted(teams, key=lambda k: k['Sponsors'], reverse=True)
    colOrder = ['Team', 'Name', 'Sponsors', 'Full Name']
    gen.listOfDictToCSV("Team Sponsors", teams, colOrder)
Пример #2
0
normalEvents = [0, 1]

rookieVal = 7400
maxTeam = 7900
perPage = 500
pages = round(maxTeam / perPage)

yearStart = 2016
yearEnd = 2018
yearRange = range(yearStart, yearEnd + 1)

teamList = {}
eventList = {}
for year in yearRange:
    teamList[year] = gen.readTeamListCsv(year)['Teams'].tolist()
    eventList[year] = slff.fetchNormalEventData(year)

#teams = gen.readTeamListCsv(2019)['Teams'].tolist()
teams = tba.district_teams('2019tx', False, True)
#teams = ['frc125', 'frc401', 'frc7179']

eventFields = ['Code', 'Type', 'Week', 'Total Points', 'Award Points', 'Award Names', 'Draft Points', 'Rank Points', 'Elim Points', 'Rank']

teamData = {}
for team in tqdm(teams):
    teamData[team] = {}
    for year in yearRange:
        teamData[team][year] = []
        if team in teamList[year]:
            teamEvents = gen.readTeamCsv(team, 'events', year)
Пример #3
0
import gen

teams = gen.readTeamListCsv(2018)['Teams']

records = []
for team in teams:
    matches = gen.readTeamCsv(team, 'matches', 2018)

    wins = 0
    losses = 0
    ties = 0

    if matches is not None:
        for idx, match in matches.iterrows():
            result = gen.matchResult(team, match)

            wins += result == 'WIN'
            losses += result == 'LOSS'
            ties += result == 'TIE'

        total = wins + losses + ties
        if total != 0:
            if wins == 0:
                wins = 1
                total = total * 10
                rating = wins / total
                wins = 0
            else:
                rating = wins / total
            recordString = str(wins) + ' / ' + str(losses) + ' / ' + str(ties)
            records.append({
Пример #4
0
import gen

YEAR = 2018

tba = gen.setup()

teams = gen.readTeamListCsv(2018).Teams


def fetchNames(robotList):
    print('memes')


robotNames = []
for team in teams:
    robots = tba.team_robots(team)
    for robot in robots:
        if robot.year == 2018:
            robotNames.append({
                'name': robot.robot_name,
                'length': len(robot.robot_name)
            })
print(len(robotNames))
robotNames = sorted(robotNames, key=lambda k: k['Length'])
gen.listOfDictToCSV('robotNames', robotNames, ['Length', 'Name'])
Пример #5
0
import gen
import pandas as pd
from tqdm import tqdm

tba = gen.setup()

matchData = []

teamList = gen.readTeamListCsv(2018)['Teams'].tolist()

for team in tqdm(teamList):
    teamMax = 0
    yearMax = 0

    for year in range(2008, 2019):
        matchesPlayed = len(tba.team_matches(team, None, year, False, True))

        if matchesPlayed > teamMax:
            teamMax = matchesPlayed
            yearMax = year

    matchData.append({'Team': team, 'Max Matches': teamMax, 'Year': year})

matchDf = pd.DataFrame(matchData).sort_values('Max Matches').to_csv(
    'TeamMaxMatches.csv', index=False)
Пример #6
0
import gen
import slff

currentYear = 2018
rookieYear = 2006

prevTeams = gen.readTeamListCsv(rookieYear - 1)['Teams']
currTeams = gen.readTeamListCsv(rookieYear)['Teams']

rookies = []
for team in currTeams:
    prevYears = slff.getTeamYears(team, rookieYear - 1)
    if len(prevYears) == 0:
        print(team)

        #Event data (ranks, opr)
        events = gen.readTeamCsv(team, 'events', currentYear)
        ranks = []
        oprs = []
        avgOpr = 0
        avgRank = 99
        if events is not None:
            for event in events['Event']:
                rank = gen.readEventCsv(event, 'rankings')
                opr = gen.readEventCsv(event, 'opr')

                if opr is not None:
                    oprs.append(opr[opr.Team == team]['OPR'].values[0])
                else:
                    print("Couldn't get OPR data for", event)
                if rank is not None:
Пример #7
0
import gen

currentTeams = gen.readTeamListCsv(2019)

teamGaps = {x: {'Max Gap': 0, 'Current Gap': 0} for x in currentTeams['Teams']}

for year in range(1992, 2019):
    yearTeams = gen.readTeamListCsv(year)

    for team in currentTeams['Teams']:
        entry = teamGaps[team]
        if team in yearTeams['Teams'].unique():
            teamYearEvents = gen.readTeamCsv(team, 'events', year)

            champTypes = [3, 4]
            if any(elem in champTypes for elem in teamYearEvents['Type']):
                if entry['Current Gap'] > entry['Max Gap']:
                    entry['Max Gap'] = entry['Current Gap']
                    entry['Current Gap'] = 0
            else:
                entry['Current Gap'] += 1

for team in teamGaps:
    entry = teamGaps[team]
    if entry['Current Gap'] > entry['Max Gap']:
        entry['Max Gap'] = entry['Current Gap']
Пример #8
0
def main():
    global teams
    pool = Pool()
    teamData = {}
    teamList = gen.readTeamListCsv(currentYear, ['Teams'])['Teams']

    for team in teamList:
        teams[team] = {'playValues': [], 'awardValues': [], 'totalValues': []}
        for year in years:
            teams[team][str(year)] = {'playPoints': 0, 'awardPoints': 0}

    for idx, year in enumerate(years):
        gen.progressBar(idx, len(years))
        teamData[str(year)] = []
        teamData[str(year)] = pool.map(partial(getData, year), teamList)

    for year in teamData:
        for t in teamData[year]:
            teams[t['team']][year]['playPoints'] = t['playPoints']
            teams[t['team']][year]['awardPoints'] = t['awardPoints']

    outData = []
    for team in teams:
        playValues = [teams[team][str(year)]['playPoints'] for year in years]
        awardValues = [teams[team][str(year)]['awardPoints'] for year in years]
        totalValues = [
            teams[team][str(year)]['playPoints'] +
            teams[team][str(year)]['awardPoints'] for year in years
        ]

        avgPlay = stat.mean(playValues)
        avgAward = stat.mean(awardValues)
        avgTotal = stat.mean(totalValues)

        maxPlay = max(playValues)
        maxAward = max(awardValues)
        maxTotal = max(totalValues)

        teamObj = {
            'Team': team[3:],
            'Average Play': avgPlay,
            'Average Award': avgAward,
            'Average Total': avgTotal,
            'Max Play': maxPlay,
            'Max Award': maxAward,
            'Max Total': maxTotal
        }

        for idx, year in enumerate(years):
            teamObj[str(year) + ' Play'] = playValues[idx]
            teamObj[str(year) + ' Award'] = awardValues[idx]
            teamObj[str(year) + ' Total'] = totalValues[idx]

        outData.append(teamObj)

    colOrder = [
        'Team', 'Average Play', 'Average Award', 'Average Total', 'Max Play',
        'Max Award', 'Max Total'
    ]
    for year in range(currentYear - yearRange + 1, currentYear + 1):
        colOrder.append(str(year) + ' Play')
        colOrder.append(str(year) + ' Award')
        colOrder.append(str(year) + ' Total')

    gen.listOfDictToCSV("Worldwide Regional", outData, colOrder)
Пример #9
0
import gen
import pandas as pd
from tqdm import tqdm

tba = gen.setup()
teamDf = pd.read_csv('rawTeams.csv', header=None, index_col=0)
teams2019 = gen.readTeamListCsv(2019)['Teams']

names = []
for team in tqdm(teams2019):
    if team in teamDf.index:
        names.append({'Team': team[3:], 'Name': teamDf.loc[team][1]})
    else:
        names.append({'Team': team[3:], 'Name': tba.team(team)['nickname']})

gen.listOfDictToCSV('Team Names', names, ['Team', 'Name'])