Пример #1
0
def main(args, model_path):
    print('args:', args.seq, args.json, args.savefig, args.display)
    np.random.seed(0)
    torch.manual_seed(0)

    # Generate sequence config
    img_list, init_bbox, gt, savefig_dir, display, result_path = gen_config(
        args)

    # Run tracker
    result, result_bb, fps, overlap = run_mdnet(img_list,
                                                init_bbox,
                                                gt=gt,
                                                savefig_dir=savefig_dir,
                                                display=display,
                                                model_path=model_path)

    # Save result
    res = {}
    res['res'] = result_bb.round().tolist()
    res['type'] = 'rect'
    res['fps'] = fps
    json.dump(res, open(result_path, 'w'), indent=2)

    return overlap, 'tracker002'
def confirmation_handler(update, context):
    data = update.callback_query.data
    user_id = data[1:]
    if data[0] == 'n':
        context.bot.send_message(chat_id=user_id,
                                 text='Sorry payment is invalid.')
    elif data[0] == 'y':
        if check_user_exist(user_id):
            if check_expired(user_id):
                context.bot.send_message(
                    chat_id=user_id,
                    text='Your account updated for next month.')
                update_user(user_id)
        else:
            user = get_tmp_user(user_id)
            # Generate file config
            file_name = gen_config()
            with open(file_name, 'r') as fd:
                context.bot.sendDocument(user_id, document=fd)
            add_user(user_id, user[2])
            context.bot.send_message(chat_id=user_id,
                                     text=f'Hi! You are now registered.')
            context.job_queue.run_daily(alarm,
                                        datetime.time(13, 45, 00),
                                        context=user_id,
                                        name=str(user_id))
Пример #3
0
 def init_info_and_rpaths(self, ext):
     self.ssl_config = gen_config.gen_config(self.build_temp, couchbase_core=couchbase_core)
     self.info.setbase(self.build_temp)
     self.info.cfg = self.cfg_type()
     self.compiler.add_include_dir(os.path.join(*self.info.base+["install","include"]))
     self.compiler.add_library_dir(os.path.join(*self.info.base+["install","lib",self.cfg_type()]))
     if sys.platform == 'darwin':
         warnings.warn('Adding /usr/local to lib search path for OS X')
         self.compiler.add_library_dir('/usr/local/lib')
         self.compiler.add_include_dir('/usr/local/include')
     self.add_rpaths(ext)
Пример #4
0
from gen_config import gen_config

CONFIG = {
    "groups": {
        "wireplane": range(0, 10),
    },
    "streams": ["example"],
    "metrics": {
        "rms": {},
        "hit_occupancy": {}
    }
}

gen_config(CONFIG)
Пример #5
0
if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument('-s', '--seq', default='', help='input seq')
    parser.add_argument('-j', '--json', default='', help='input json')
    parser.add_argument('-f', '--savefig', action='store_true')
    parser.add_argument('-d', '--display', action='store_true')

    args = parser.parse_args()
    assert args.seq != '' or args.json != ''

    np.random.seed(0)
    torch.manual_seed(0)

    # Generate sequence config
    img_list, init_bbox, gt, savefig_dir, display, result_path = gen_config(
        args)

    # Run tracker
    result, result_bb, fps = run_mdnet(img_list,
                                       init_bbox,
                                       gt=gt,
                                       savefig_dir=savefig_dir,
                                       display=display)

    # Save result
    res = {}
    res['res'] = result_bb.round().tolist()
    res['type'] = 'rect'
    res['fps'] = fps
    json.dump(res, open(result_path, 'w'), indent=2)