Пример #1
0
def plot_fps(fp_arr,
             dim=3,
             decomp=isomap_factory,
             cmap='hsv',
             ax=None,
             fwid=5,
             **kwargs):
    p = decomp(dim)
    arr_iter = u.make_array_ind_iterator(fp_arr.shape[:-1])
    fp_arr_flat = np.stack(list(fp_arr[ind] for ind in arr_iter
                                if not np.any(np.isnan(fp_arr[ind]))),
                           axis=0)
    p.fit(fp_arr_flat)
    cm = plt.get_cmap(cmap)
    cols = cm(np.linspace(0, 1, fp_arr.shape[0]))
    if ax is None:
        f = plt.figure(figsize=(fwid, fwid))
        if dim == 3:
            ax = f.add_subplot(1, 1, 1, projection='3d')
        else:
            ax = f.add_subplot(1, 1, 1)
    for i, fp_col in enumerate(fp_arr):
        for ind in u.make_array_ind_iterator(fp_col.shape[:-2]):
            if not np.any(np.isnan(fp_col[ind])):
                trs_fp = p.transform(fp_col[ind])
                ax.plot(*trs_fp.T, 'o', color=cols[i])
                ax.plot(*trs_fp.T, color=cols[i])
    return ax
Пример #2
0
def explore_mse_tradeoff_parallel(n_units, total_dims, overlaps, total_pwrs,
                                  n_regions=(1, 2), n_jobs=-1, **kwargs):
    arr_shape = (len(n_units), len(total_dims), len(overlaps),
                 len(total_pwrs))
    totals = {nr:np.zeros(arr_shape) for nr in n_regions}
    distorts = {nr:np.zeros(arr_shape) for nr in n_regions}
    ae_rates = {nr:np.zeros_like(distorts[nr]) for nr in n_regions}
    mis_prob = {nr:np.zeros(arr_shape, dtype=object) for nr in n_regions}
    mis_err = {nr:np.zeros(arr_shape, dtype=object) for nr in n_regions}

    def _mse_tradeoff_helper(ind):
        i, j, k, l = ind
        out = mse_tradeoff(n_units[i], total_dims[j], n_regions=n_regions,
                           overlap=overlaps[k], total_pwr=total_pwrs[l],
                           **kwargs)
        total, ds, aers, mp, me = out
        return ind, total, ds, aers, mp, me

    args = (n_units, total_dims, overlaps, total_pwrs)
    ind_iter = u.make_array_ind_iterator(arr_shape)
    par = jl.Parallel(n_jobs=n_jobs)
    out = par(jl.delayed(_mse_tradeoff_helper)(ind) for ind in ind_iter)
    for ind, total, ds, aers, mp, me in out:
        for k, d_k in ds.items():
            totals[k][ind] = total[k]
            distorts[k][ind] = np.sum(d_k) # np.product(d_k)/np.sum(d_k)
            ae_rates[k][ind] = np.sum(aers[k])
            mis_prob[k][ind] = mp[k]
            mis_err[k][ind] = me[k]
            
    return args, totals, distorts, ae_rates, mis_prob, mis_err
Пример #3
0
def _compute_assignment_distortion(n_feats, overlaps, num_regions):
    overlaps = np.array(overlaps)
    left_out = np.zeros((len(n_feats), len(overlaps)))
    for (i, j) in u.make_array_ind_iterator(left_out.shape):
        nf = n_feats[i]
        overlap = overlaps[j]
        left_out[i, j] = nf - max(_split_integer(nf + overlap, num_regions))
    left_out[left_out <= 0] = 0
    ws = left_out/6
    # ws[ws <= 0] = 0
    ws = np.expand_dims(ws, 0)
    ws = np.expand_dims(ws, -1)
    return ws    
Пример #4
0
def explore_fi_tradeoff(n_units, total_dims, overlaps, total_pwrs,
                        n_regions=(1, 2), **kwargs):
    arr_shape = (len(n_units), len(total_dims), len(overlaps),
                 len(total_pwrs))
    distorts = {nr:np.zeros(arr_shape) for nr in n_regions}
    ae_rates = {nr:np.zeros_like(distorts[nr]) for nr in n_regions}
    for ind in u.make_array_ind_iterator(arr_shape):
        i, j, k, l = ind
        ds, aers = fi_tradeoff(n_units[i], total_dims[j], n_regions=n_regions,
                               overlap=overlaps[k], total_pwr=total_pwrs[l],
                               **kwargs)
        for k, d_k in ds.items():
            distorts[k][ind] = np.mean(d_k)
            ae_rates[k][ind] = np.mean(aers[k])
    return distorts, ae_rates
Пример #5
0
def plot_mu_hists(models, mu_key, mu2=None, axs=None, fwid=3):
    pshape = list(models.values())[0].posterior[mu_key].shape[2:]
    if axs is None:
        figsize = (fwid * pshape[1], fwid * pshape[0])
        f, axs = plt.subplots(*pshape, figsize=figsize)
    for k, m in models.items():
        mus = m.posterior[mu_key]
        for (i, j) in u.make_array_ind_iterator(pshape):
            mu_plot = mus[..., i, j].to_numpy().flatten()
            if mu2 is not None:
                mu2_plot = m.posterior[mu2][..., i, j].to_numpy().flatten()
                mu_plot = mu_plot - mu2_plot
            axs[i, j].hist(mu_plot, label=k, histtype='step')
            gpl.add_vlines(0, axs[i, j])
    axs[i, j].legend(frameon=False)
    return axs
Пример #6
0
def post_estimated_mse(est_arr, conf_dict, pwr=None, n_units=None,
                       dim=None):
    new_arr = np.zeros(est_arr.shape + est_arr[0, 0, 0, 0].shape)
    mse_fi_arr = np.zeros(est_arr.shape)
    
    for ind in u.make_array_ind_iterator(est_arr.shape):
        new_arr[ind] = est_arr[ind]
        mse_fi_arr[ind] = 1/conf_dict[ind[:2]][0][0, 0]
        if pwr is not None and n_units is not None:
            pwr_i = pwr[ind[0]]
            n_i = n_units[ind[1]]
            w_use = conf_dict[ind[:2]][1]
            resp_use = conf_dict[ind[:2]][2]
            prob, mag = rfm.compute_threshold_err_prob(pwr_i, n_i, dim, w_use,
                                                       resp_scale=resp_use)
            mse_fi_arr[ind] = (1 - prob)*mse_fi_arr[ind] + prob*mag
    return new_arr, mse_fi_arr
Пример #7
0
def compute_transition(total_dims, total_pwrs, total_units, nrs=(1, 2, 3),
                       overlap=1):
    l_mse = np.zeros((len(nrs), len(total_dims), len(total_pwrs),
                      len(total_units)))
    nl_mse = np.zeros_like(l_mse)
    tot_noae = np.zeros_like(l_mse)
    ae_rate = np.zeros_like(l_mse)
    tot_nothr = np.zeros_like(l_mse)
    for (nr_i, td_i, tp_i, tu_i) in u.make_array_ind_iterator(l_mse.shape):
        nr, td, tp, tu = (nrs[nr_i], total_dims[td_i], total_pwrs[tp_i],
                          total_units[tu_i])
        out = mse_tradeoff(tu, td, n_regions=(nr,), overlap=overlap,
                           total_pwr=tp)
        tot_te, ld, ae_prob, t_prob, t_mag = out
        l_mse[nr_i, td_i, tp_i, tu_i] = np.sum(ld[nr])
        nl_mse[nr_i, td_i, tp_i, tu_i] = np.sum(t_prob[nr]*t_mag[nr])
        tot = np.sum(ld[nr]*(1 - t_prob[nr]) + t_prob[nr]*t_mag[nr])
        tot_noae[nr_i, td_i, tp_i, tu_i] = tot
        ae_rate[nr_i, td_i, tp_i, tu_i] = np.sum(ae_prob[nr])
        tot_nothr[nr_i, td_i, tp_i, tu_i] = tot_te[nr]
    return tot_nothr, tot_noae, l_mse, nl_mse, ae_rate
Пример #8
0
def explore_fi_tradeoff_parallel(n_units, total_dims, overlaps, total_pwrs,
                                 n_regions=(1, 2), n_jobs=-1, **kwargs):
    arr_shape = (len(n_units), len(total_dims), len(overlaps),
                 len(total_pwrs))
    distorts = {nr:np.zeros(arr_shape) for nr in n_regions}
    ae_rates = {nr:np.zeros_like(distorts[nr]) for nr in n_regions}

    def _fi_tradeoff_helper(ind):
        i, j, k, l = ind
        ds, aers = fi_tradeoff(n_units[i], total_dims[j], n_regions=n_regions,
                               overlap=overlaps[k], total_pwr=total_pwrs[l],
                               **kwargs)
        return ind, ds, aers

    args = (n_units, total_dims, overlaps, total_pwrs)
    ind_iter = u.make_array_ind_iterator(arr_shape)
    par = jl.Parallel(n_jobs=n_jobs)
    out = par(jl.delayed(_fi_tradeoff_helper)(ind) for ind in ind_iter)
    for ind, ds, aers in out:
        for k, d_k in ds.items():
            distorts[k][ind] = np.mean(d_k) # np.product(d_k)/np.sum(d_k)
            ae_rates[k][ind] = np.mean(aers[k])
    return args, distorts, ae_rates