def actual_ovo_classifier(classifier, train_data, test_data, output_dir,
                          bacteria_num, class_num):
    train_answer = train_data.pop("Classification")
    test_answer = test_data.pop("Classification")

    train_data = train_data[general.num_to_bacteria(bacteria_num)]
    test_data = test_data[general.num_to_bacteria(bacteria_num)]

    classifier.fit(train_data, train_answer)

    pandas.DataFrame(classifier.predict_proba(test_data),
                     columns=sorted(set(test_answer))).to_csv(
                         general.check_exist(
                             os.path.join(
                                 output_dir,
                                 "Probability_" + str(bacteria_num) + "_" +
                                 str(class_num) + ".csv")),
                         index=False)

    prediction = classifier.predict(test_data)
    pandas.DataFrame(zip(test_answer, prediction),
                     columns=["real",
                              "prediction"]).to_csv(general.check_exist(
                                  os.path.join(
                                      output_dir,
                                      "Prediction_" + str(bacteria_num) + "_" +
                                      str(class_num) + ".csv")),
                                                    index=False)
    return (bacteria_num, ) + general.aggregate_confusion_matrix(
        numpy.sum(sklearn.metrics.multilabel_confusion_matrix(
            test_answer, prediction),
                  axis=0,
                  dtype=int))
Пример #2
0
def actual_regressor(regressor, train_data, test_data, output_dir,
                     bacteria_num):
    train_answer = train_data.pop("answer")
    test_answer = test_data.pop("answer")

    train_data = train_data[general.num_to_bacteria(bacteria_num)]
    test_data = test_data[general.num_to_bacteria(bacteria_num)]

    regressor.fit(train_data, train_answer)

    return bacteria_num, abs(regressor.score(test_data, test_answer))
Пример #3
0
def headquarter_regressor(input_file, output_dir, watch, jobs=30):
    data = pandas.read_csv(input_file)
    data = data[[watch] + general.whole_values]
    data.rename(columns={watch: "answer"}, inplace=True)

    train_data, test_data = sklearn.model_selection.train_test_split(
        data, test_size=0.1, random_state=0)

    with multiprocessing.Pool(processes=jobs) as pool:
        for name, regressor in regressors:
            results = [("Number", "R2_score")]

            results += pool.starmap(
                actual_regressor,
                [(regressor, train_data.copy(), test_data.copy(),
                  os.path.join(output_dir, name), i)
                 for i in range(1, 2**len(general.absolute_values))])
            results += pool.starmap(
                actual_regressor,
                [(regressor, train_data.copy(), test_data.copy(),
                  os.path.join(output_dir, name), i *
                  (2**len(general.absolute_values)))
                 for i in range(1, 2**len(general.relative_values))])

            results = pandas.DataFrame(results[1:], columns=results[0])
            results["regressor"] = name
            results["feature_num"] = list(
                map(lambda x: len(general.num_to_bacteria(x)),
                    results["Number"]))
            results.to_csv(general.check_exist(
                os.path.join(output_dir, name, "statistics.csv")),
                           index=False)

    drawing_data = pandas.concat([
        pandas.read_csv(os.path.join(output_dir, name, "statistics.csv"))
        for name, regressor in regressors
    ],
                                 ignore_index=True)
    drawing_data.to_csv(general.check_exist(
        os.path.join(output_dir, "statistics.csv")),
                        index=False)

    seaborn.set(context="poster", style="whitegrid")
    fig, ax = matplotlib.pyplot.subplots(figsize=(24, 24))

    seaborn.lineplot(data=drawing_data,
                     x="feature_num",
                     y="R2_score",
                     hue="regressor",
                     ax=ax,
                     legend="full",
                     hue_order=sorted(set(drawing_data["regressor"])))

    fig.savefig(
        general.check_exist(
            os.path.join(output_dir, "Regressor_" + watch + ".png")))
    matplotlib.pyplot.close(fig)
Пример #4
0
def draw_extreme(csv_file, output_dir):
    if not os.path.isfile(csv_file):
        raise ValueError(csv_file)

    statistics_data = pandas.read_csv(csv_file)

    results = [("combined_class", "classifier", "bacteria", "statistics", "type", "value")]
    for combined_class in sorted(set(statistics_data["combined_class"])):
        tmp = list(filter(lambda x: "+" in x, combined_class.split("-vs-")))
        if tmp:
            combined_class_num = general.class_to_num(tmp[0].split("+"))
        else:
            combined_class_num = 0

        for classifier in sorted(set(statistics_data["classifier"])):
            prediction_directory = os.path.join(os.path.dirname(csv_file), classifier)

            for statistics_value in general.aggregate_confusion_matrix(None):
                selected_data = statistics_data.loc[(statistics_data["combined_class"] == combined_class) & (statistics_data["classifier"] == classifier)][[statistics_value, "Number"]]

                minimum, maximum = selected_data.loc[selected_data.idxmin(axis="index")[statistics_value], "Number"], selected_data.loc[selected_data.idxmax(axis="index")[statistics_value], "Number"]

                for name, value in zip(["minimum", "maximum"], [minimum, maximum]):
                    if combined_class_num:
                        prediction_data = pandas.read_csv(os.path.join(prediction_directory, "Prediction_%s_%d.csv" % (value, combined_class_num)))
                    else:
                        prediction_data = pandas.read_csv(os.path.join(prediction_directory, "Prediction_%s.csv" % (value)))
                    prediction_data = prediction_data.groupby(list(prediction_data.columns), as_index=False).size().reset_index().rename(columns={0: "counts"}).pivot("prediction", "real", "counts").fillna(0)

                    seaborn.set(context="poster", style="whitegrid")
                    fig, ax = matplotlib.pyplot.subplots(figsize=(24, 24))
                    seaborn.heatmap(prediction_data, annot=True, ax=ax, robust=True)
                    ax.set_title(combined_class.replace("-", " ") + " with " + statistics_value)
                    fig.savefig(general.check_exist(os.path.join(output_dir, name + "_" + combined_class + "_" + classifier + "_" + statistics_value + ".png")))
                    matplotlib.pyplot.close(fig)

                    results.append((combined_class, classifier, "+".join(general.num_to_bacteria(value)), statistics_value, name, value))

    pandas.DataFrame(results[1:], columns=results[0]).to_csv(general.check_exist(os.path.join(output_dir, "Min_Max.csv")), index=False)
Пример #5
0
def draw_statistics(csv_file, output_dir):
    if not os.path.isfile(csv_file):
        raise ValueError(csv_file)

    statistics_data = pandas.read_csv(csv_file)
    statistics_data["feature_num"] = list(map(lambda x: len(general.num_to_bacteria(x)), statistics_data["Number"]))

    for combined_class in sorted(set(statistics_data["combined_class"])):
        selected_data = statistics_data.loc[(statistics_data["combined_class"] == combined_class)]

        for statistics_value in sorted(general.aggregate_confusion_matrix(None)):
            seaborn.set(context="poster", style="whitegrid")
            fig, ax = matplotlib.pyplot.subplots(figsize=(24, 24))
            seaborn.lineplot(x="feature_num", y=statistics_value, hue="classifier", ax=ax, legend="full", data=selected_data, hue_order=sorted(set(statistics_data["classifier"])), estimator="median", ci="sd")
            ax.set_title(combined_class.replace("-", " "))
            fig.savefig(general.check_exist(os.path.join(output_dir, "Median_" + combined_class + "_" + statistics_value + ".png")))
            matplotlib.pyplot.close(fig)

            seaborn.set(context="poster", style="whitegrid")
            fig, ax = matplotlib.pyplot.subplots(figsize=(24, 24))
            seaborn.lineplot(x="feature_num", y=statistics_value, hue="classifier", ax=ax, legend="full", data=selected_data, hue_order=sorted(set(statistics_data["classifier"])))
            ax.set_title(combined_class.replace("-", " "))
            fig.savefig(general.check_exist(os.path.join(output_dir, "Mean_" + combined_class + "_" + statistics_value + ".png")))
            matplotlib.pyplot.close(fig)

            seaborn.set(context="poster", style="whitegrid")
            fig, ax = matplotlib.pyplot.subplots(figsize=(24, 24))
            seaborn.lineplot(x="feature_num", y=statistics_value, hue="classifier", ax=ax, legend="full", data=selected_data, hue_order=sorted(set(statistics_data["classifier"])), estimator=min, ci=None)
            ax.set_title(combined_class.replace("-", " "))
            fig.savefig(general.check_exist(os.path.join(output_dir, "Min_" + combined_class + "_" + statistics_value + ".png")))
            matplotlib.pyplot.close(fig)

            seaborn.set(context="poster", style="whitegrid")
            fig, ax = matplotlib.pyplot.subplots(figsize=(24, 24))
            seaborn.lineplot(x="feature_num", y=statistics_value, hue="classifier", ax=ax, legend="full", data=selected_data, hue_order=sorted(set(statistics_data["classifier"])), estimator=max, ci=None)
            ax.set_title(combined_class.replace("-", " "))
            fig.savefig(general.check_exist(os.path.join(output_dir, "Max_" + combined_class + "_" + statistics_value + ".png")))
            matplotlib.pyplot.close(fig)