Пример #1
0
	return model


if __name__ == '__main__':
	input_size = 128
	minibatch_size = 16
	batch_size = 3200

	checkpoint_path = 'checkpoints'
	if not os.path.exists(checkpoint_path):
		os.makedirs(checkpoint_path)

	model = build_model()
	model.load('road_model1-800000')

	# Train
	for i in range(num_iterations):
		image_data, label_data = \
			generate_data.generate_batch(
				height=input_size,
				width=input_size,
				minibatch_size=batch_size)

		X = image_data
		Y = label_data[:,newaxis]

		model.fit({'input': X}, {'target': Y},
				   n_epoch=1,
				   batch_size=minibatch_size,
				   snapshot_epoch=True, show_metric=True, run_id='road_model1')
if __name__ == '__main__':
    input_size = 128
    minibatch_size = 16
    batch_size = 3200

    checkpoint_path = 'checkpoints'
    if not os.path.exists(checkpoint_path):
        os.makedirs(checkpoint_path)

    model = build_model()
    model.load('road_model1-800000')

    # Train
    for i in range(num_iterations):
        image_data, label_data = \
         generate_data.generate_batch(
          height=input_size,
          width=input_size,
          minibatch_size=batch_size)

        X = image_data
        Y = label_data[:, newaxis]

        model.fit({'input': X}, {'target': Y},
                  n_epoch=1,
                  batch_size=minibatch_size,
                  snapshot_epoch=True,
                  show_metric=True,
                  run_id='road_model1')
Пример #3
0
                         samples_val[i]['xq_padded'].flatten()))
        y_s = samples_val[i]['ys_padded'].flatten()
        y_q = samples_val[i]['yq_padded'].flatten()

        x_val[:len(x_b), i] = x_b
        y_val[:len(y_s), i] = y_s
        z_val[:len(y_q), i] = y_q

    # start training
    episode_start_time = time.time()
    for episode in range(1, args.num_episodes + 1):

        model.train()

        # generate batch
        x, y, z = generate_batch(args.batch_size, generate_episode_train,
                                 tabu_episodes)

        # update params
        model.zero_grad()
        output = model(x.cuda(), y.cuda(), src_mask=None, tgt_mask=None)
        loss = criterion(output.view(-1, ntoken), z.view(-1).cuda())
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if episode % args.eval_interval == 0:

            model.eval()

            with torch.no_grad():
                val_out = model(x_val.cuda(),