Пример #1
0
    def send_notifications(self):
        for symbol, strategy in self.orders.items():
            for strat, order in self.orders[symbol].items():
                for index, row in order.iterrows():
                    t = parser.parse(row['TIME']) - datetime.timedelta(hours=2)

                    if (datetime.datetime.now() - t).total_seconds() < 60 * 60:
                        value = "Type: " + row['TYPE'] + " -- SL:" + str(row['SL']) + " -- TP:" + str(
                            row['TP']) + " -- OPEN_AT:" + \
                                str(row['OPEN_AT']) + ' -- TIME ' + str(row['TIME'])
                        notify("[Strategy:  " + strat + " ] " + value, symbol)
Пример #2
0
    def analyse_high_and_low(self, symbol):
        # LOWINPIPS, HIGHINPIPS
        df = self.prices[symbol].copy()
        df['AVG_LOW'] = df['LOWINPIPS'].rolling(window=5).mean()
        if df['AVG_LOW'].iloc[-1] < df['LOWINPIPS'].iloc[-1] and get_pips(
                symbol, df['LOWINPIPS'].iloc[-1]) > 15:
            notify(symbol, "LOW Signal")

        df['AVG_HIGH'] = df['HIGHINPIPS'].rolling(window=5).mean()
        if df['AVG_HIGH'].iloc[-1] < df['HIGHINPIPS'].iloc[-1] and get_pips(
                symbol, df['HIGHINPIPS'].iloc[-1]) > 15:
            notify(symbol, "HIGH Signal")
Пример #3
0
    def notify_buy_sell(self, symbol, avg):
        return
        df = self.prices[symbol].copy()
        df['AVG'] = df['CLOSE'] - df['CLOSE'].ewm(span=avg).mean()
        last = df['AVG'].iloc[-1]
        penu = df['AVG'].iloc[-2]

        if symbol in SELL:
            if last < 0 < penu:
                notify("You might Want to SELL " + symbol + " now", symbol)

        if symbol in BUY:
            if penu < 0 < last:
                notify("You might Want to BUY " + symbol + " now", symbol)
Пример #4
0
    def notify_trends(self, symbol, avg=20, long=10):
        def consecutive_mean(x):
            pos = 0
            neg = 0
            for j in x:
                if j >= 0:
                    pos += 1
                else:
                    neg += 1
            if pos == len(x):
                return 1
            if neg == len(x):
                return -1
            return 0

        df = self.prices[symbol].copy()
        # APPLY AVG
        df['AVG'] = df['CLOSE'] - df['CLOSE'].ewm(span=avg).mean()
        df['consecutive'] = df['AVG'].rolling(
            window=long).apply(lambda x: consecutive_mean(x))
        trending = ""
        if df['consecutive'].iloc[-1] == 1:
            trending = 1
        if df['consecutive'].iloc[-1] == -1:
            trending = -1
        if trending != "":
            for i in range(1, 30, 1):
                df['target' + str(i)] = -df['CLOSE'].diff(-i)
                df['target' +
                   str(i)] = df['target' +
                                str(i)].apply(lambda x: get_pips(symbol, x))

            df = df[df['consecutive'] == trending]
            to_send = []
            for i in range(1, 30, 1):
                to_send.append('Ahead: ' + str(i) + 'pips: ' +
                               str(df['target' + str(i)].mean()))
            to_send = "\n".join(to_send)

            if trending == 1:
                trending = "UP"
            else:
                trending = "DOWN"

            notify("TRENDING: " + trending + "\n" + to_send, symbol)
Пример #5
0
    def read_objects(self, path, symbol):
        old_objects = self.objects.get(symbol, None)
        self.objects[symbol] = pd.read_csv(path)
        if old_objects is None:
            return
        old_rows = old_objects.shape[0]
        new_rows = self.objects[symbol].shape[0]
        if old_rows != new_rows:
            return
        for i in range(old_rows):
            row_old = old_objects.iloc[i]
            row_new = self.objects[symbol].iloc[i]
            old_diff = row_old['dist']
            new_diff = row_new['dist']
            if old_diff * new_diff < 0:
                now = "Now is Up"
                if new_diff < 0:
                    now = "Now is Down"

                msg = "Possible (False) Breakout " + row_new[
                    'Type'] + " - " + now + "\n"
                msg += "Name Line is: " + row_new['name']
                notify(msg, symbol)
Пример #6
0
    def send_notifications(self):
        if self.last_notification is None:
            self.last_notification = datetime.datetime.now()
        elif (datetime.datetime.now() -
              self.last_notification).total_seconds() < 60 * 5:
            return
        else:
            self.last_notification = datetime.datetime.now()

        symbols1 = {*self.objects}
        ok = False
        for symbol in symbols1:
            old_shape = self.shapes.get(symbol, 0)
            if old_shape != self.prices[symbol].shape[0]:
                self.shapes[symbol] = self.prices[symbol].shape[0]
            else:
                continue
            trend_bearish = self.get_trend_line(symbol, bearish=True)
            trend_bullish = self.get_trend_line(symbol, bearish=False)
            line_bullish = self.get_lines(symbol, bearish=False)
            line_bearish = self.get_lines(symbol, bearish=True)
            pin_bar_up = self.get_pin_bar_up(symbol)
            pin_bar_down = self.get_pin_bar_down(symbol)
            ok = True
            self.send_actual_notification_threshold(trend_bullish, symbol)
            self.send_actual_notification_threshold(trend_bearish, symbol)
            self.send_actual_notification_threshold(line_bullish, symbol)
            self.send_actual_notification_threshold(line_bearish, symbol)
            rsi = self.prices[symbol]["RSI"].iloc[-1]
            dist_bb_25_up = int(
                get_pips(symbol,
                         self.prices[symbol]["DIST_BB_25_UP"].iloc[-1]))
            dist_bb_25_down = int(
                get_pips(symbol,
                         self.prices[symbol]["DIST_BB_25_DOWN"].iloc[-1]))

            if rsi < 27 or rsi > 73:
                notify(symbol, "RSI: " + str(rsi))
            if pin_bar_down:
                notify(symbol, 'PIN_BAR_DOWN (BUY)')
            if pin_bar_up:
                notify(symbol, 'PIN_BAR_UP (SELL)')
            #
            # if dist_bb_25_up > -5:
            #     notify(symbol, "Bollinger UP: " + str(dist_bb_25_up))
            #
            # if dist_bb_25_down < 5:
            #     notify(symbol, "Bollinger DOWN: " + str(dist_bb_25_down))

            # self.analyse_high_and_low(symbol)
            # self.notify_trends(symbol, avg=25, long=20)
            #self.notify_break(symbol, avg=25, long=20)
            #self.notify_buy_sell(symbol, avg=25)
        if ok:
            correlation(self.prices)
Пример #7
0
    def notify_break(self, symbol, avg=20, long=10):
        def consecutive_mean(x):
            pos = 0
            neg = 0
            for j in x:
                if j >= 0:
                    pos += 1
                else:
                    neg += 1
            if pos == len(x):
                return 1
            if neg == len(x):
                return -1
            return 0

        df = self.prices[symbol].copy()

        # APPLY AVG
        df['AVG'] = df['CLOSE'] - df['CLOSE'].ewm(span=avg).mean()
        df['consecutive'] = df['AVG'].rolling(
            window=long).apply(lambda x: consecutive_mean(x))
        trending = ""

        if df['consecutive'].iloc[-1] == 0 and df['consecutive'].iloc[-2] == 1:
            trending = "Possible retracement DOWN"

        if df['consecutive'].iloc[-1] == 0 and df['consecutive'].iloc[-2] == -1:
            trending = "Possible retracement UP"

        if trending != "":
            for i in range(1, 30, 1):
                df['target' + str(i)] = -df['CLOSE'].diff(-i)
                df['target' +
                   str(i)] = df['target' +
                                str(i)].apply(lambda x: get_pips(symbol, x))

            df['consecutive_'] = df['consecutive'].shift(1)
            if 'UP' in trending:
                df = df[(df['consecutive'] == 0) & (df['consecutive_'] == -1)]
            else:
                df = df[(df['consecutive'] == 0) & (df['consecutive_'] == 1)]

            to_send = []
            for i in range(1, 30, 1):
                to_send.append('Ahead: ' + str(i) + 'pips: ' +
                               str(df['target' + str(i)].mean()))
            to_send = "\n".join(to_send)

            notify("BREAKING AVG20: " + trending + "\n" + to_send, symbol)

        # Look for pullback
        tot = 0
        pos = 0
        neg = 0
        for dist in list(df['AVG'].tail(60)):
            if dist >= 0:
                pos += 1
            if dist <= 0:
                neg += 1
            tot += 1
        pos = pos / tot
        neg = neg / tot
        if pos >= 0.8:
            l = list(df['AVG'].tail(3))
            if l[2] > 0 > l[1] and l[0] < 0:
                notify("Possible Pullback (BUY)", symbol)

        if neg >= 0.8:
            l = list(df['AVG'].tail(3))
            if l[2] < 0 and l[1] > 0 and l[0] > 0:
                notify("Possible Pullback (SELL)", symbol)
Пример #8
0
 def send_actual_notification_threshold(self, objs, symbol, threshold=50):
     for obj in objs:
         if abs(obj['dist']) < threshold:
             notify(symbol, "TREND LINE " + str(obj))