class GAEngineTest(TestCase):
    def setUp(self) -> None:
        """
        Sets up unittest
        """
        tester = TesterIndividual()
        self.ga_engine = GAEngine(tester)
        self.ga_engine.initialize_population(POPULATION_SIZE)

    def test_initialize_population(self):
        actual_population = self.ga_engine.population
        self.assertEqual(POPULATION_SIZE, len(actual_population),
                         "Population size mismatch")
        self.assertEqual(POPULATION_SIZE, len(self.ga_engine),
                         "Population size mismatch")
        for _ in range(RANDOM_TEST):
            i = randint(0, POPULATION_SIZE - 1)
            self.assertIsInstance(actual_population[i], TesterIndividual,
                                  "Population of unexpected class")

    def test_evaluate_fitness(self):
        self.assertLessEqual(self.ga_engine.solution_found(0.0), False,
                             "Not always return false if not evaluated")
        self.ga_engine.evaluate_fitness()
        fitness = self.ga_engine.fitness
        self.assertEqual(len(fitness), POPULATION_SIZE,
                         "Wrong number of fitness calculated")
        expected_score = 90
        self.assertFalse(self.ga_engine.solution_found(expected_score),
                         "Solution not found")
        expected_score = 70
        self.assertTrue(self.ga_engine.solution_found(expected_score),
                        "Solution found")

    def test_selection(self):
        expected_score = 50
        self.ga_engine.evaluate_fitness()
        old_score = sum(self.ga_engine.fitness) / len(self.ga_engine)
        self.ga_engine.selection(expected_score)
        actual_population = self.ga_engine.population
        self.assertLess(POPULATION_SIZE, len(actual_population),
                        "Population did not duplicate on selection")
        self.assertEqual(POPULATION_SIZE * 2, len(actual_population),
                         "Population did not duplicate on selection")
        # Due to fitness is random:
        new_score = sum([x.my_fitness for x in self.ga_engine.population
                         ]) / len(self.ga_engine)
        self.assertGreater(new_score, old_score, "Score did not improve")

    def test_reproduction(self):
        expected_score = 40
        self.ga_engine.evaluate_fitness()
        self.ga_engine.selection(expected_score)
        self.assertLess(POPULATION_SIZE, len(self.ga_engine),
                        "Mismatch population size")
        self.ga_engine.reproduction()
        self.assertEqual(POPULATION_SIZE, len(self.ga_engine),
                         "Reproduction failed")
        self.ga_engine.evaluate_fitness()

    def test_add(self):
        new_one = GAEngine(TesterIndividual())
        new_one.initialize_population(50)
        last_one = self.ga_engine + new_one
        self.assertEqual(POPULATION_SIZE + 50, len(last_one),
                         "Add bad implemented")
        self.assertEqual(
            len(self.ga_engine) + len(new_one), len(last_one),
            "Add bad implemented")

    def test_robust_operations(self):
        with self.assertRaises(RuntimeError):
            self.ga_engine.selection()
        self.ga_engine.population.clear()
        with self.assertRaises(RuntimeError):
            self.ga_engine.evaluate_fitness()
        odd = 13
        self.ga_engine.initialize_population(odd)
        self.ga_engine.reproduction()
        expected = int(odd / 2) + 1
        self.assertEqual(expected, len(self.ga_engine))
        self.ga_engine.population.clear()
        self.assertRaises(RuntimeError,
                          self.ga_engine.run_to_equilibrium,
                          POPULATION_SIZE,
                          10,
                          use_prev=True)

    def test_initialize_again(self):
        self.assertEqual(POPULATION_SIZE, len(self.ga_engine),
                         "Population size mismatch")
        self.ga_engine.initialize_population(100)
        self.assertEqual(100, len(self.ga_engine),
                         "Population not over-generated")

    def test_next_generation(self):
        self.ga_engine.evaluate_fitness()
        self.assertEqual(1, self.ga_engine.generation,
                         "Wrong first Generation")
        self.ga_engine.next_generation()
        self.assertEqual(100, len(self.ga_engine), "Population mismatch")
        self.assertEqual(2, self.ga_engine.generation,
                         "Wrong second Generation")

    def test_next_generation_save(self):
        self.ga_engine.evaluate_fitness(register=True)
        self.assertEqual(1, self.ga_engine.generation,
                         "Wrong first generation")
        self.ga_engine.next_generation(register=True)
        self.assertEqual(100, len(self.ga_engine), "Population mismatch")
        self.assertEqual(2, self.ga_engine.generation,
                         "Wrong second Generation")
        result = self.ga_engine.result
        result._ready = True
        self.assertEqual(2, len(result), "Mismatch result size")

    def test_run_no_solution(self):
        expected = 1e10  # unreachable
        max_generation = 100
        result = self.ga_engine.run_to_reach(expected,
                                             0,
                                             10,
                                             max_generation=max_generation)
        generations = result.get_generations()[-1]
        found = result.found_solution
        self.assertEqual(max_generation, generations,
                         "Not stop when supposed to")
        self.assertFalse(found, "Found it")

    def test_run_solution(self):
        expected = 50  # reachable
        result = self.ga_engine.run_to_reach(expected, 0, 100)
        generations = result.get_generations()[-1]
        self.assertTrue(result.found_solution, "Solution not found")
        self.assertLessEqual(generations, 1000, "Run more than permitted")

    def test_run_equilibrium(self):
        self.ga_engine.the_first_one = TesterEquilibrium()
        result = self.ga_engine.run_to_equilibrium(100, 10)
        generations = result.get_generations()[-1]
        found = result.found_solution
        self.assertEqual(10, generations, "Not stop when supposed to")
        self.assertTrue(found, "Not found it")

    def test_run_fixed_generation(self):
        expected = 0.0  # reachable
        max_generation = 10
        self.ga_engine.the_first_one = TesterEquilibrium()
        result = self.ga_engine.run_fixed_generation(100, max_generation)
        generations = result.get_generations()[-1]
        first_score = result.get_max_scores()[0]
        found = result.found_solution
        self.assertEqual(max_generation, generations,
                         "Not stop when supposed to")
        self.assertTrue(found, "Not found it")
        self.assertGreaterEqual(EPSILON, abs(expected - first_score),
                                "Fitness miscalculated")

    def setup_use_prev(self):
        """
        Generate a previous generation to use on a new run algorithm
        """
        self.ga_engine.evaluate_fitness()
        self.ga_engine.next_generation()
        self.ga_engine.next_generation()
        self.ga_engine.next_generation()
        self.assertEqual(4, self.ga_engine.generation,
                         "Problem with setup prev generation")

    def test_run_solution_with_prev(self):
        self.setup_use_prev()
        expected = 1e10  # unreachable
        max_generation = 10
        self.ga_engine.run_to_reach(expected,
                                    0,
                                    10,
                                    max_generation=max_generation,
                                    use_prev=True)
        self.assertNotEqual(max_generation, self.ga_engine.generation,
                            "Not used previous generation")
        self.assertEqual(max_generation + 3, self.ga_engine.generation,
                         "Wrong number of generation used")

    def test_run_equilibrium_with_prev(self):
        self.setup_use_prev()
        max_generation = 10
        self.ga_engine.run_to_equilibrium(100,
                                          10,
                                          max_generation=max_generation,
                                          use_prev=True)
        self.assertNotEqual(max_generation, self.ga_engine.generation,
                            "Not used previous generation")
        self.assertEqual(max_generation + 3, self.ga_engine.generation,
                         "Wrong number of generation used")

    def test_run_fixed_generation_with_prev(self):
        self.setup_use_prev()
        max_generation = 10
        self.ga_engine.run_fixed_generation(100, max_generation, use_prev=True)
        self.assertNotEqual(max_generation, self.ga_engine.generation,
                            "Not used previous generation")
        self.assertEqual(max_generation + 3, self.ga_engine.generation,
                         "Wrong number of generation used")
Пример #2
0
    individual, label, population, score = get_input(key, args.mutation_rate)

    logging.info("Generate engine:")
    environment = GAEngine(individual)
    logging.info("Run algorithm:")
    if args.equilibrium is None:
        result = environment.run_to_reach(score,
                                          0.0,
                                          population,
                                          log=True,
                                          tournament_size=args.tournament_size)
    else:
        result = environment.run_to_equilibrium(
            population,
            args.equilibrium,
            log=True,
            tournament_size=args.tournament_size)
    _, ax = plt.subplots(figsize=(12, 12))
    if key == "sentence_guesser":
        ax.plot(result.get_generations(),
                result.get_max_scores(),
                "-",
                label="{}\n(maximum score)".format(label))
        ax.plot(result.get_generations(),
                result.get_mean_scores(),
                "-",
                label="average score")
        ax.plot(result.get_generations(),
                result.get_min_scores(),
                "-",