Пример #1
0
def get_q_s_prob(q,s,eventname,eventinfo,data,parms_names,isspitz,use_color,I_minus_L,ntheta,outputlc=False,finmod_opt=False,date_mod=[]):
    alpha,delta,oblats,oblongs,obgammas = eventinfo
    parmfit,namefit,parmflx,nameflx,parmref = parms_names
    tbegin,talert,t0par,t0base,mjd = parmref
    thetas = np.linspace(0,360,ntheta+1)
    binlcs,binfull = [],[]
    bincau = []
    use_fsfb = True
    start = time.clock()
    ############################
    ### fake data generation ###
    ############################
    print '----- Generating binary lcs... ------'
    for i in range(ntheta):
        itheta = thetas[i]
        parmbfit = np.hstack([parmfit,[itheta,q,s]])
        parmbflx = parmflx
        iobbinlc,iobfull = [],[]
        for iob in range(len(data)):
            date,flux,ferr,mag,merr = data[iob]
            ibinlc,xcau,ycau = genlc.getbinlc(alpha,delta,oblats[iob],oblongs[iob],date,parmbfit,parmbflx[iob],obgammas[iob],t0par,isspitz[iob],use_fsfb,caustic=bincau)
            bincau = [xcau,ycau]
            iobbinlc.append([date,ibinlc[:,2],ferr])
            iobfull.append([date,ibinlc[:,0],ibinlc[:,1],ibinlc[:,2],ferr])
            ### find the fine input model ###
            if finmod_opt == True:
                ibinlc_mod,xcau,ycau = genlc.getbinlc(alpha,delta,oblats[iob],oblongs[iob],date_mod,parmbfit,parmbflx[iob],obgammas[iob],t0par,isspitz[iob],use_fsfb,caustic=bincau)
                np.savetxt('output/models/finmod-%s-%.5f-%.2f-%03d-%d.dat'%(eventname,q,s,itheta,iob+1),np.vstack([date_mod,ibinlc_mod.T]).T,fmt='%f')
        binlcs.append(iobbinlc)
        binfull.append(iobfull)
    np.savetxt('output/caustics/caustic-%s-%.5f-%.2f.dat'%(eventname,q,s),np.array(bincau).T,fmt='%f')
    print '------ Binary lcs generated: ',time.clock()-start,' s ------'
    ##################################
    ### employ sfitpy to fake data ###
    ##################################
    if talert > max(data[0][0]): ## obj event
        print '--- This is an obj event ---'
        trials = sfitpy.massfit_obj(q,s,thetas,binlcs,binfull,eventinfo,parms_names,isspitz,use_color,I_minus_L,outputlc)
    else: ## subj event
        print '--- This is a subj event ---'
        trials = sfitpy.massfit_sub(q,s,thetas,binlcs,binfull,eventinfo,parms_names,isspitz,use_color,I_minus_L,outputlc)
    return trials
Пример #2
0
def main():
    eventname = 'ob140939'
### find event information, input data, program setup ###
    alpha,delta,datfiles,oblat,oblong,obgamma = getparm.getEventInfo(eventname)
    parmref,parmfit,parmflx,efacs = getparm.getFitSetting(eventname)
    t0par = parmref[0]
    t0base= parmref[1]
    HMJD  = parmref[2]
    nobs  = len(datfiles)
    parmfit[0] += t0base
    print 'Total number of obs: ',nobs
    print 'Parameters (ref): ',parmref
    print 'Parameters (sfit): ',parmfit
    print 'Parameters (flux): ',parmflx
    print 'Errfacs: ',efacs
#    isspit = np.zeros(nobs).astype(bool)
    isspit = np.zeros(nobs-1).astype(bool)
    isspit = np.hstack([isspit,True])
    linestrs = ['-','--']
    date,flux,ferr,magr,merr = getdat.getdat1(nobs,datfiles,efacs,isspit,HMJD)
#############################################################
### use more intensive time sequence ###
    date_mod = np.linspace(6800,6900,1000)
#### choose s and q for sensitivity mapping ###
#    plot_opt = False
#    finmod_opt = False
#    ntheta = 300
#    qList = np.logspace(np.log10(1e-4),np.log10(1e-2),50)
#    sList = np.logspace(np.log10(0.1),np.log10(10),50)
#    ### five parallel programs ###
#    ncore = 6
#    each = 50/ncore
##    qList = qList[:each]
##    qList = qList[each:2*each]
##    qList = qList[2*each:3*each]
##    qList = qList[3*each:4*each]
##    qList = qList[4*each:5*each]
#    qList = qList[5*each:]
#################################################
### for test purpose ###
    plot_opt = True
    finmod_opt = True
    ntheta = 6
    qList = [1e-2]
    sList = [1.1]
########################
    for q in qList:
        trials = []
        for s in sList:
            theta = np.linspace(0,360,ntheta+1)
            xtrajs,ytrajs,binlcs = [],[],[]
            binlcs_mod = []
            use_fsfb = True
            start = time.clock()
            ############################
            ### fake data generation ###
            ############################
            for i in range(ntheta):
                itheta = theta[i]
                parmbfit = np.hstack([parmfit,[itheta,q,s]])
                parmbflx = parmflx
                iobxtraj,iobytraj,iobbinlc = [],[],[]
                iobbinlc_mod = []
                for iob in range(nobs):
                    ibinlc,xcau,ycau = genlc.getbinlc(alpha,delta,oblat[iob],oblong[iob],date[iob],parmbfit,parmbflx[iob],obgamma[iob],t0par,isspit[iob],use_fsfb)
                    iobxtraj.append(ibinlc[:,0])
                    iobytraj.append(ibinlc[:,1])
                    iobbinlc.append(ibinlc[:,2])
                    ### find the fine input model ###
                    if finmod_opt == True:
                        ibinlc_mod,xcau,ycau = genlc.getbinlc(alpha,delta,oblat[iob],oblong[iob],date_mod,parmbfit,parmbflx[iob],obgamma[iob],t0par,isspit[iob],use_fsfb)
                        iobbinlc_mod.append(ibinlc_mod[:,2])
                xtrajs.append(iobxtraj)
                ytrajs.append(iobytraj)
                binlcs.append(iobbinlc)
                binlcs_mod.append(iobbinlc_mod)
            xtrajs = np.array(xtrajs)
            ytrajs = np.array(ytrajs)
            binlcs = np.array(binlcs)
            print 'binary lcs generated: ',time.clock()-start
########################################################
            ################################
            ### employ sfit to fake data ###
            ################################
########################################################
            sinlcs,chi2all = [],[]
            parmfit0 = parmfit
            parmflx0 = parmflx
            for i in range(ntheta):
                itheta = theta[i]
########################################
############# SFITPY MODULE ############
########################################
### if sfit.getchi2 is used, the plotted
### light curve will not be right, beca-
### -use fs, fb are still the input vals
########################################
######## Downhill minimization only ###
                iparmfit,iparmflx,chi2 = sfit.downhill(sfit.lnprob_func,parmfit,parmflx,[date,binlcs[i],ferr],nobs,[alpha,delta,oblat,oblong,obgamma],t0par,isspit)
#                iparmfit,iparmflx,chi2 = sfit.downhill(sfit.getchi2,parmfit,parmflx,[date,binlcs[i],ferr],nobs,[alpha,delta,oblat,oblong,obgamma],t0par,isspit)
######## MCMC minimization only ###
#                iparmfit,iparmflx,chi2 = sfit.mcmcfit(sfit.getchi2,parmfit,parmflx,[date,binlcs[i],ferr],nobs,[alpha,delta,oblat,oblong,obgamma],t0par,isspit)
######## Downhill + MCMC ####
#                iparmfit,iparmflx,chi2 = sfit.downhill(sfit.getchi2,parmfit,parmflx,[date,binlcs[i],ferr],nobs,[alpha,delta,oblat,oblong,obgamma],t0par,isspit)
#                if chi2[0] > 200:
#                    iparmfit,iparmflx,chi2 = sfit.mcmcfit(sfit.getchi2,iparmfit,iparmflx,[date,binlcs[i],ferr],nobs,[alpha,delta,oblat,oblong,obgamma],t0par,isspit)
########################################
                if chi2[0] < 100:
                    parmfit0 = iparmfit
                    parmflx0 = iparmflx
                ### find best-fit model ###
                isinlc = []
                for iob in range(nobs):
                    itraj,ifmod = genlc.getslc(alpha,delta,oblat[iob],oblong[iob],date_mod,iparmfit,iparmflx[iob],obgamma[iob],t0par,isspit[iob],False,True)
                    isinlc.append(ifmod)
                ###########################
                temp = np.hstack([q,s,theta[i],chi2.reshape(-1),iparmfit,iparmflx.reshape(-1)])
                trials.append(temp)
                sinlcs.append(isinlc)
                chi2all.append(chi2[0])
                print '##########',q,s,theta[i],chi2[0],'############'
            sinlcs = np.array(sinlcs)
############################################################
            ###############################
            ### fake data demonstration ###
            ###############################
            if plot_opt == True:
                color1 = ['#99d8c9','#66c2a4','#41ae76','#238b45','#005824'] #green
                color2 = ['#fdbb84','#fc8d59','#ef6548','#d7301f','#990000'] #red
                color3 = ['#a6bddb','#74a9cf','#3690c0','#0570b0','#034e7b'] #blue
                color4 = ['#bdbdbd','#969696','#737373','#525252','#252525'] #black
                colors = np.array([color1,color2,color3,color4]).reshape(-1)
                fig1 = plt.figure(figsize=(8.5,11))
                nax1 = ntheta/2
                axs = []
                fig2 = plt.figure(figsize=(8.6,8))
                ax0 = fig2.add_subplot(111) # axis to plot the trajectories
                ax0.plot(xcau,ycau,linestyle='none',color='k',marker='o',markersize=1)
                ax0.axis('equal')
                for i in range(ntheta):
                    itheta = theta[i]
                    axi = fig1.add_subplot(nax1,2,i+1)
                    axs.append(axi)
                    for iob in range(nobs):
                        ### plot fake data ###
#                        iflux,iferr = binlcs[i][iob],ferr[iob] #do not convert to OGLE system
                        iflux,iferr = getdat.convert_to_ogle_dat(binlcs[i][iob],ferr[iob],parmflx[iob],parmflx[0]) #convert to OGLE system
                        axi.errorbar(date[iob],iflux,yerr=iferr,color=colors[i],linestyle='none',marker='o')
                        if finmod_opt == True:
#                            ifmod = binlcs_mod[i][iob] #do not convert to OGLE system
                            ifmod = getdat.convert_to_ogle_mod(binlcs_mod[i][iob],parmflx[iob],parmflx[0]) #convert to OGLE system
                            axi.plot(date_mod,ifmod,color=colors[i],linestyle='--')
                        ### plot best-fit smod ###
#                        ifmod = sinlcs[i][iob] #do not convert to OGLE system
                        ifmod = getdat.convert_to_ogle_mod(sinlcs[i][iob],parmflx[iob],parmflx[0]) #convert to OGLE system
                        axi.plot(date_mod,ifmod,color=colors[i])
                        ### plot trajectory ###
                        ax0.plot(xtrajs[i][iob],ytrajs[i][iob],color=colors[i],linestyle=linestrs[iob])
                    axi.set_xlim(6800,6900)
                    x1,x2,y1,y2 = axs[i].axis()
                    xpos = x1+(x2-x1)/10.
                    ypos = y2-(y2-y1)/10.
                    axi.text(xpos,ypos,r'$\theta=%3.1f^\circ, \chi^2=%3.1f$'%(itheta,chi2all[i]),va='center')
                    axi.invert_yaxis()
                plt.show()
        ### save parameters and chi2 ###
        np.savetxt('output/grid-%s-%e.dat'%(eventname,q),np.array(trials),fmt='%f')
    return
Пример #3
0
def main():
    ## Event Information ##
    eventname = 'ob151346'
    alpha = (17. + 59/60. + 13.67/3600.)*15
    delta =-(28. + 56/60. + 11.8/3600.)
    fs,fb = 0.07
    Gamma = 0.60
    ## OGLE site ##
    qlong = -70.702
    qlat  = -29.0083
    ## planet/binary parameters ##
    t0 = 7190.74
    u0 = 0.18
    te = 25.12
    rho = 0.001
    theta = 80. # in degrees
    q = 0.0014
    s = 1.116
    Ibase = 19.4027
    fb_over_fs = -0.4134
#    ## Binary Parameters for ob150914 ##
#    t0 = 7172.14
#    u0 = 0.0243
#    te = 36.8418
#    rho = 0.0047
#    theta = 3.81532/np.pi*180
#    theta = 180-theta ## Bozza system
#    q = 0.369
#    s = 1.4718
#    ## Bozza gave Ibase and Fb/Fs ##
#    Ibase = 14.6422
#    fb_over_fs = 18.445
#    ## binary event ob150060 ##
#    t0 = 7148.109
#    u0 = 0.019
#    te = 71.8
#    rho = 0.00479
#    theta = 3.593/np.pi*180
#    q = 1.10
#    s = 3.40
#    Ibase = 16.6885
#    fb_over_fs = 0.3337
#    ## Planetary Event OB150051 ##
#    t0 = 7083.100
#    u0 = 0.221
#    te = 10.95
#    rho = 0.045
#    theta = 5.351*180/np.pi #Han
#    q = 5.94e-3
#    s = 0.939
#    Ibase = 16.629
#    fb_over_fs = -0.0216
    ###########
    fb_plus_fs = 10**(0.4*(18-Ibase))
    fs = fb_plus_fs/(1+fb_over_fs)
    fb = fb_over_fs*fs
    print fs,fb
    ###########
    fig = plt.figure(figsize=(8.5,11))
    ax1 = plt.subplot(311)
    ax2 = plt.subplot(312)
    ax3 = plt.subplot(313)
    linestr = ['-','--','-.']
#    colors = ['k','#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','0.5']
#    pies = [-0.1,0,0.1]
    pieNs = [0.0193]
    pieEs = [-0.2949]
    colors = cm.rainbow(np.linspace(0,1,len(pieEs)*len(pieNs)))
    nmod = 0
#    ogle = np.loadtxt('data/ob150966.dat')
#    dates = ogle[:,0]-2450000
    dates = np.linspace(7100,7250,15000)
    for pieE in pieEs:
        for pieN in pieNs:
            piex = pieN
            piey = pieE
            parmfit = [t0,u0,te,rho,piex,piey,theta,q,s]
            parmflx = [fs,fb]
            t0par = t0
            lcg,xcau,ycau = genlc.getbinlc(alpha,delta,qlat,qlong,dates,parmfit,parmflx,Gamma,t0par,False,True)
            lcs,xcau,ycau = genlc.getbinlc(alpha,delta,qlat,qlong,dates,parmfit,parmflx,Gamma,t0par,True,True)
            magg = 18-2.5*np.log10(lcg[:,2])
            mags = 18-2.5*np.log10(lcs[:,2])
            if nmod == 0:
                ax1.plot(dates,magg,color='b',linestyle='--',label='OGLE',lw=2)
#                np.savetxt('ob150966-Bozza.mod',np.vstack([dates,magg]).T,fmt='%f')
                ax2.plot(dates,magg,color='b',linestyle='--',label='OGLE',lw=2)
                ax3.plot(xcau,ycau,marker='.',markersize=2,linestyle='none',color='k')
                ax3.plot(lcg[:,0],lcg[:,1],color='b')
            ax1.plot(dates,mags,color=colors[nmod],label='Spitzer,(%.1f,%.1f)'%(pieE,pieN))
            ax2.plot(dates,mags,color=colors[nmod],label='Spitzer,(%.1f,%.1f)'%(pieE,pieN))
            ax3.plot(lcs[:,0],lcs[:,1],color=colors[nmod])
            nmod += 1
    ax3.axis('equal')
    plt.suptitle(eventname,fontsize=14,fontweight='bold')
    ax1.legend(loc=0,fontsize=10)
    ax1.invert_yaxis()
    ax2.invert_yaxis()
    ax2.axis([7143,7156,15.3,11.7])
    ax1.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax1.xaxis.set_minor_locator(AutoMinorLocator(5))
    ax2.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax2.xaxis.set_minor_locator(AutoMinorLocator(5))
    ax3.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax3.xaxis.set_minor_locator(AutoMinorLocator(5))
    plt.show()