Пример #1
0
    def job_producer():
      """Fill jobs queue using the input `sentences` iterator."""
      job_batch, batch_size = [], 0
      pushed_words, pushed_examples = 0, 0
      next_alpha = self.alpha
      if next_alpha > self.min_alpha_yet_reached:
        logger.warn("Effective 'alpha' higher than previous training cycles")
      self.min_alpha_yet_reached = next_alpha
      job_no = 0

      for sent_idx, sentence in enumerate(sentences):
        sentence_length = self._raw_word_count([sentence])

        # can we fit this sentence into the existing job batch?
        if batch_size + sentence_length <= self.batch_words:
          # yes => add it to the current job
          job_batch.append(sentence)
          batch_size += sentence_length
        else:
          # no => submit the existing job
          pair_idx = list(
              numpy.random.choice(
                  range(len(self.pairwise_constraints)), int(batch_size * 0.2)))
          pairwise_samples = [self.pairwise_constraints[x] for x in pair_idx]
          logger.debug(
              "queueing job #%i (%i words, %i sentences, %i constraints) at alpha %.05f",
              job_no, batch_size, len(job_batch), len(pairwise_samples),
              next_alpha)
          job_no += 1
          job_queue.put((job_batch, pairwise_samples, next_alpha))

          # update the learning rate for the next job
          if self.min_alpha < next_alpha:
            if total_examples:
              # examples-based decay
              pushed_examples += len(job_batch)
              progress = 1.0 * pushed_examples / total_examples
            else:
              # words-based decay
              pushed_words += self._raw_word_count(job_batch)
              progress = 1.0 * pushed_words / total_words
            next_alpha = self.alpha - (self.alpha - self.min_alpha) * progress
            next_alpha = max(self.min_alpha, next_alpha)

          # add the sentence that didn't fit as the first item of a new job
          job_batch, batch_size = [sentence], sentence_length

      # add the last job too (may be significantly smaller than batch_words)
      if job_batch:
        logger.debug(
            "queueing job #%i (%i words, %i sentences, %i constraints) at alpha %.05f",
            job_no, batch_size, len(job_batch), len(self.pairwise_constraints),
            next_alpha)
        job_no += 1
        job_queue.put((job_batch, self.pairwise_constraints, next_alpha))

      if job_no == 0 and self.train_count == 0:
        logger.warning(
            "train() called with an empty iterator (if not intended, "
            "be sure to provide a corpus that offers restartable "
            "iteration = an iterable).")

      # give the workers heads up that they can finish -- no more work!
      for _ in xrange(self.workers):
        job_queue.put(None)
      logger.debug("job loop exiting, total %i jobs", job_no)
Пример #2
0
  def train(self,
            sentences,
            total_words=None,
            word_count=0,
            total_examples=None,
            queue_factor=2,
            report_delay=1.0):
    """ Update the model's neural weights from a sequence of sentences (can be a

        once-only generator stream).
        For Word2Vec, each sentence must be a list of unicode strings.
        (Subclasses may accept other examples.)

        To support linear learning-rate decay from (initial) alpha to min_alpha,
        either total_examples
        (count of sentences) or total_words (count of raw words in sentences)
        should be provided, unless the
        sentences are the same as those that were used to initially build the
        vocabulary.
    """
    logger.info("Starting training.")

    self.neg_labels = []
    if self.negative > 0:
      # precompute negative labels optimization for pure-python training
      self.neg_labels = zeros(self.negative + 1)
      self.neg_labels[0] = 1.

    if FAST_VERSION < 0:
      import warnings
      warnings.warn(
          "C extension not loaded for Word2Vec, training will be slow. "
          "Install a C compiler and reinstall gensim for fast training.")
      self.neg_labels = []
      if self.negative > 0:
        # precompute negative labels optimization for pure-python training
        self.neg_labels = zeros(self.negative + 1)
        self.neg_labels[0] = 1.

    logger.info(
        "training model with %i workers on %i vocabulary and %i features, "
        "using sg=%s hs=%s sample=%s negative=%s window=%s", self.workers,
        len(self.vocab), self.layer1_size, self.sg, self.hs, self.sample,
        self.negative, self.window)

    if not self.vocab:
      raise RuntimeError(
          "you must first build vocabulary before training the model")
    if not hasattr(self, "syn0"):
      raise RuntimeError(
          "you must first finalize vocabulary before training the model")

    if total_words is None and total_examples is None:
      if self.corpus_count:
        total_examples = self.corpus_count
        logger.info(
            "expecting %i sentences, matching count from corpus used for vocabulary survey",
            total_examples)
      else:
        raise ValueError(
            "you must provide either total_words or total_examples, to enable alpha and progress calculations"
        )

    job_tally = 0

    if self.iter > 1:
      sentences = utils.RepeatCorpusNTimes(sentences, self.iter)
      total_words = total_words and total_words * self.iter
      total_examples = total_examples and total_examples * self.iter

    def worker_loop():
      """Train the model, lifting lists of sentences from the job_queue."""
      work = matutils.zeros_aligned(
          self.layer1_size, dtype=REAL)  # per-thread private work memory
      neu1 = matutils.zeros_aligned(self.layer1_size, dtype=REAL)
      jobs_processed = 0
      while True:
        job = job_queue.get()
        if job is None:
          progress_queue.put(None)
          break  # no more jobs => quit this worker
        sentences, pairwise, alpha = job
        tally, raw_tally = self._do_train_job(sentences, pairwise, alpha,
                                              (work, neu1))
        progress_queue.put(
            (len(sentences), tally, raw_tally))  # report back progress
        jobs_processed += 1
      logger.debug("worker exiting, processed %i jobs", jobs_processed)

    def job_producer():
      """Fill jobs queue using the input `sentences` iterator."""
      job_batch, batch_size = [], 0
      pushed_words, pushed_examples = 0, 0
      next_alpha = self.alpha
      if next_alpha > self.min_alpha_yet_reached:
        logger.warn("Effective 'alpha' higher than previous training cycles")
      self.min_alpha_yet_reached = next_alpha
      job_no = 0

      for sent_idx, sentence in enumerate(sentences):
        sentence_length = self._raw_word_count([sentence])

        # can we fit this sentence into the existing job batch?
        if batch_size + sentence_length <= self.batch_words:
          # yes => add it to the current job
          job_batch.append(sentence)
          batch_size += sentence_length
        else:
          # no => submit the existing job
          pair_idx = list(
              numpy.random.choice(
                  range(len(self.pairwise_constraints)), int(batch_size * 0.2)))
          pairwise_samples = [self.pairwise_constraints[x] for x in pair_idx]
          logger.debug(
              "queueing job #%i (%i words, %i sentences, %i constraints) at alpha %.05f",
              job_no, batch_size, len(job_batch), len(pairwise_samples),
              next_alpha)
          job_no += 1
          job_queue.put((job_batch, pairwise_samples, next_alpha))

          # update the learning rate for the next job
          if self.min_alpha < next_alpha:
            if total_examples:
              # examples-based decay
              pushed_examples += len(job_batch)
              progress = 1.0 * pushed_examples / total_examples
            else:
              # words-based decay
              pushed_words += self._raw_word_count(job_batch)
              progress = 1.0 * pushed_words / total_words
            next_alpha = self.alpha - (self.alpha - self.min_alpha) * progress
            next_alpha = max(self.min_alpha, next_alpha)

          # add the sentence that didn't fit as the first item of a new job
          job_batch, batch_size = [sentence], sentence_length

      # add the last job too (may be significantly smaller than batch_words)
      if job_batch:
        logger.debug(
            "queueing job #%i (%i words, %i sentences, %i constraints) at alpha %.05f",
            job_no, batch_size, len(job_batch), len(self.pairwise_constraints),
            next_alpha)
        job_no += 1
        job_queue.put((job_batch, self.pairwise_constraints, next_alpha))

      if job_no == 0 and self.train_count == 0:
        logger.warning(
            "train() called with an empty iterator (if not intended, "
            "be sure to provide a corpus that offers restartable "
            "iteration = an iterable).")

      # give the workers heads up that they can finish -- no more work!
      for _ in xrange(self.workers):
        job_queue.put(None)
      logger.debug("job loop exiting, total %i jobs", job_no)

    # buffer ahead only a limited number of jobs.. this is the reason we can't simply use ThreadPool :(
    job_queue = Queue(maxsize=queue_factor * self.workers)
    progress_queue = Queue(maxsize=(queue_factor + 1) * self.workers)

    workers = [
        threading.Thread(target=worker_loop) for _ in xrange(self.workers)
    ]
    unfinished_worker_count = len(workers)
    workers.append(threading.Thread(target=job_producer))

    for thread in workers:
      thread.daemon = True  # make interrupting the process with ctrl+c easier
      thread.start()

    example_count, trained_word_count, raw_word_count = 0, 0, word_count
    start, next_report = default_timer() - 0.00001, 1.0

    while unfinished_worker_count > 0:
      report = progress_queue.get()  # blocks if workers too slow
      if report is None:  # a thread reporting that it finished
        unfinished_worker_count -= 1
        logger.info(
            "worker thread finished; awaiting finish of %i more threads",
            unfinished_worker_count)
        continue
      examples, trained_words, raw_words = report
      job_tally += 1

      # update progress stats
      example_count += examples
      trained_word_count += trained_words  # only words in vocab & sampled
      raw_word_count += raw_words

      # log progress once every report_delay seconds
      elapsed = default_timer() - start
      if elapsed >= next_report:
        if total_examples:
          # examples-based progress %
          logger.info(
              "PROGRESS: at %.2f%% examples, %.0f words/s, in_qsize %i, out_qsize %i",
              100.0 * example_count / total_examples,
              trained_word_count / elapsed, utils.qsize(job_queue),
              utils.qsize(progress_queue))
        else:
          # words-based progress %
          logger.info(
              "PROGRESS: at %.2f%% words, %.0f words/s, in_qsize %i, out_qsize %i",
              100.0 * raw_word_count / total_words,
              trained_word_count / elapsed, utils.qsize(job_queue),
              utils.qsize(progress_queue))
        next_report = elapsed + report_delay

    # all done; report the final stats
    elapsed = default_timer() - start
    logger.info(
        "training on %i raw words (%i effective words) took %.1fs, %.0f effective words/s",
        raw_word_count, trained_word_count, elapsed,
        trained_word_count / elapsed)
    if job_tally < 10 * self.workers:
      logger.warn(
          "under 10 jobs per worker: consider setting a smaller `batch_words' for smoother alpha decay"
      )

    # check that the input corpus hasn't changed during iteration
    if total_examples and total_examples != example_count:
      logger.warn(
          "supplied example count (%i) did not equal expected count (%i)",
          example_count, total_examples)
    if total_words and total_words != raw_word_count:
      logger.warn(
          "supplied raw word count (%i) did not equal expected count (%i)",
          raw_word_count, total_words)

    self.train_count += 1  # number of times train() has been called
    self.total_train_time += elapsed
    self.clear_sims()
    return trained_word_count