for i, p in zip(range(C.shape[0]), perm):
            f.write("%d, %d, %g, %g\n" %
                    (i + 1, p + 1, C[i, perm[i]], OC[i, perm[i]]))

    print("Rendering images")
    for i in range(len(perm)):
        if perm[i] >= 0:
            f = plt.figure(figsize=(12, 6))
            gs = matplotlib.gridspec.GridSpec(2,
                                              2,
                                              width_ratios=[5, 5],
                                              height_ratios=[6, 4])
            plt.subplot(gs[0, 0])
            plot_data_robinson(np.reshape(comps1[:, i], (Nlats1, Nlons1)),
                               lats1,
                               lons1,
                               subplot=True,
                               euro_centered=True)
            plt.title('Component %d' % (i + 1))
            plt.subplot(gs[0, 1])
            plot_data_robinson(np.reshape(comps2[:, perm[i]] * sign_flip[i],
                                          (Nlats2, Nlons2)),
                               lats2,
                               lons2,
                               subplot=True,
                               euro_centered=True)
            plt.title(
                'Component %d%s' %
                (perm[i] + 1, " (sign fliped)" if sign_flip[i] == -1 else ""))
            plt.subplot(gs[1, :])
            plt.plot(ts1[i, :].T, 'b-')
Пример #2
0
                # we must match by time
                coss = subsample_component_2x2(comp_orig, oNlats, oNlons)
                dots = np.dot(coss, compsi)
                comp_ndx = np.argmax(np.abs(dots))
                sign_flip = -1.0 if dots[comp_ndx] < 0 else 1.0

            time_series[:, i] = tsi[comp_ndx, :] / np.var(
                tsi[comp_ndx, :]) * sign_flip - i * 0.4
            comp = compsi[:, comp_ndx] * sign_flip

        print("i = %d comp_ndx = %d\n" % (i, comp_ndx))

        plt.subplot(Ncomps + 1, 1, i + 1)
        plot_data_robinson(np.reshape(comp, (Nlats, Nlons)),
                           lats,
                           lons,
                           subplot=True,
                           euro_centered=euro_centered)
        plt.text(0.0, 0.99 * plt.ylim()[1], '(%s)' % ("abcdefgh"[i]))

    plt.subplot(Ncomps + 1, 1, Ncomps + 1)
    plt.plot(time_series, linewidth=0.5)
    plt.yticks([])

    year_step = 8
    years = range(1948, 2013, year_step)
    sy = [str(y) for y in years]
    plt.xticks(range(0, time_series.shape[0], 12 * year_step), sy, rotation=90)

    plt.axis('tight')
    plt.savefig(output_file)
    ts_all[:,0] = standardize(tsi)
    ts_all[:,1] = standardize(chop_series(ts1, ymin, ymax)) - 4.0
    ts_all[:,2] = standardize(chop_series(ts2, ymin, ymax)) - 2*4.0

    cc = np.corrcoef(ts_all, rowvar = 0)

    # all time series data    

    # load data from component sets
    fig = plt.figure(figsize = (12, 6))
    plt.subplots_adjust(left = 0.025, right = 0.975, top = 0.97, wspace = 0.4, hspace = 0.3)
    ax = plt.gca()

    plt.subplot2grid((2,2), (0,0))
    plot_data_robinson(np.reshape(U1, (len(lats1), len(lons1))), lats1, lons1,
                       subplot = True, add_colorbar = False, parallel_labels = 'left',
                       euro_centered = euro_centered)

    plt.subplot2grid((2,2), (0,1))
    plot_data_robinson(np.reshape(U2, (len(lats2), len(lons2))), lats2, lons2,
                       subplot = True, add_colorbar = False, parallel_labels = 'right',
                       euro_centered = euro_centered)

    plt.subplot2grid((2,2), (1,0), colspan = 2)
    plt.plot(ts_all, linewidth = 0.5)
    plt.yticks([])

    year_step = 8
    years = range(1948, 2013, year_step)
    sy = [str(y) for y in years]
    plt.xticks(range(0, ts_all.shape[0], 12 * year_step), sy, rotation = 90)
Пример #4
0
    # all time series data

    # load data from component sets
    fig = plt.figure(figsize=(12, 6))
    plt.subplots_adjust(left=0.025,
                        right=0.975,
                        top=0.97,
                        wspace=0.4,
                        hspace=0.3)
    ax = plt.gca()

    plt.subplot2grid((2, 2), (0, 0))
    plot_data_robinson(np.reshape(U1, (len(lats1), len(lons1))),
                       lats1,
                       lons1,
                       subplot=True,
                       add_colorbar=False,
                       parallel_labels='left',
                       euro_centered=euro_centered)

    plt.subplot2grid((2, 2), (0, 1))
    plot_data_robinson(np.reshape(U2, (len(lats2), len(lons2))),
                       lats2,
                       lons2,
                       subplot=True,
                       add_colorbar=False,
                       parallel_labels='right',
                       euro_centered=euro_centered)

    plt.subplot2grid((2, 2), (1, 0), colspan=2)
    plt.plot(ts_all, linewidth=0.5)
    ts2 /= np.var(ts2, axis = 1)

    with open(os.path.join(out_dir, 'matching'), 'w') as f:
        f.write("# matching from %s (left) to %s (right) in %s\n" % (sys.argv[1], sys.argv[2], sys.argv[3]))
        f.write("# third column - match similarity (correlation in time, dot product in space)\n")
        f.write("# fourth column - complementary similarity (time -> dot product in space, space -> correlation in time\n")
        for i, p in zip(range(C.shape[0]), perm):
            f.write("%d, %d, %g, %g\n" % (i+1, p+1, C[i,perm[i]], OC[i,perm[i]]))
    
    print("Rendering images")
    for i in range(len(perm)):
        if perm[i] >= 0:
            f = plt.figure(figsize = (12, 6))
            gs = matplotlib.gridspec.GridSpec(2, 2, width_ratios=[5, 5],height_ratios=[6,4]) 
            plt.subplot(gs[0,0])
            plot_data_robinson(np.reshape(comps1[:, i], (Nlats1, Nlons1)),
                               lats1, lons1, subplot = True, euro_centered = True) 
            plt.title('Component %d' % (i+1))
            plt.subplot(gs[0,1])
            plot_data_robinson(np.reshape(comps2[:, perm[i]] * sign_flip[i], (Nlats2, Nlons2)),
                               lats2, lons2, subplot = True, euro_centered = True)
            plt.title('Component %d%s' % (perm[i]+1, " (sign fliped)" if sign_flip[i] == -1 else ""))
            plt.subplot(gs[1,:])
            plt.plot(ts1[i,:].T, 'b-')
            plt.plot(ts2[perm[i],:].T * sign_flip[i], 'g-')
            if sys.argv[3] == 'time':
                plt.figtext(0.25, 0.43, 'match by timeseries Pearson corr %g, components dot %g' % (C[i,perm[i]], OC[i,perm[i]]))
            else:
                plt.figtext(0.25, 0.43, 'match by component dot %g, time series Pearson corr %g' % (C[i,perm[i]], OC[i,perm[i]]))
            plt.savefig(os.path.join(out_dir, "match_%d_to_%d.png" % (i+1, perm[i]+1)))
            plt.clf()
            sys.stdout.write("*")
Пример #6
0
    gf = load_monthly_sat_all()
    gf.detrend()
    d = gf.data()
    d = np.reshape(d, (768, 71*144))

    # compute correlation of slp time series with sat index
    Uc = np.zeros(U1.shape)
    for i in range(Uc.shape[0]):
        Uc[i] = np.corrcoef(ts1, d[:,i])[0,1]

    plt.figure(figsize = (6, 3 * 4))
    plt.subplots_adjust(left = 0.02, right = 0.96, hspace = 0.5)

    plt.subplot(311)
    plot_data_robinson(np.reshape(U1, (len(lats1), len(lons1))), lats1, lons1,
                       subplot = True, euro_centered = euro_centered)

    plt.subplot(312)
    plot_data_robinson(np.reshape(U2, (len(lats2), len(lons2))), lats2, lons2,
                       subplot = True, euro_centered = euro_centered)

    plt.subplot(313)
    plot_data_robinson(np.reshape(Uc, (len(lats2), len(lons2))), lats2, lons2,
                       subplot = True, euro_centered = euro_centered)

    plt.savefig('slp_%02d_sat_%02d.eps' % (slp_ndx, best_match+1))
    
        
        
    
        
                comp_ndx = np.argmax(np.abs(dots))
                sign_flip = -1.0 if dots[comp_ndx] < 0 else 1.0
            else:
                # we must match by time
                coss = subsample_component_2x2(comp_orig, oNlats, oNlons)
                dots = np.dot(coss, compsi)
                comp_ndx = np.argmax(np.abs(dots))
                sign_flip = -1.0 if dots[comp_ndx] < 0 else 1.0

            time_series[:, i] = tsi[comp_ndx, :] / np.var(tsi[comp_ndx, :]) * sign_flip - i*0.4
            comp = compsi[:, comp_ndx] * sign_flip

        print("i = %d comp_ndx = %d\n" % (i, comp_ndx))

        plt.subplot(Ncomps+1, 1, i+1)
        plot_data_robinson(np.reshape(comp, (Nlats, Nlons)), lats, lons,
                           subplot = True, euro_centered = euro_centered)
        plt.text(0.0, 0.99*plt.ylim()[1], '(%s)' % ("abcdefgh"[i]))

    plt.subplot(Ncomps+1, 1, Ncomps+1)
    plt.plot(time_series, linewidth = 0.5)
    plt.yticks([])

    year_step = 8
    years = range(1948,2013,year_step)
    sy = [str(y) for y in years]
    plt.xticks(range(0, time_series.shape[0], 12*year_step),sy,rotation = 90)
    
    plt.axis('tight')
    plt.savefig(output_file)