Пример #1
0
 def make_xy(self, ii, jj):
     geom_i, geom_j = parse_geom(self.geom[ii]), parse_geom(self.geom[jj])
     # should check the image size here
     #load img and check img_size
     image_i, image_j = self.image_fullpath_list[ii], self.image_fullpath_list[jj]
     kp_i = loadh5(image_i+'.'+self.desc_name+'.hdf5')["keypoints"][:, :2]
     kp_j = loadh5(image_j+'.'+self.desc_name+'.hdf5')["keypoints"][:, :2]
     cx1, cy1, f1 = self.unpack_K(geom_i)
     cx2, cy2, f2 = self.unpack_K(geom_j) 
     x1 = self.norm_kp(cx1, cy1, f1[0], f1[1], kp_i)
     x2 = self.norm_kp(cx2, cy2, f2[0], f2[1], kp_j)
     R_i, R_j = geom_i["R"], geom_j["R"]
     dR = np.dot(R_j, R_i.T)
     t_i, t_j = geom_i["t"].reshape([3, 1]), geom_j["t"].reshape([3, 1])
     dt = t_j - np.dot(dR, t_i)
     if np.sqrt(np.sum(dt**2)) <= 1e-5:
         return []
     dtnorm = np.sqrt(np.sum(dt**2))
     dt /= dtnorm
     nn_info = loadh5(os.path.join(self.intermediate_dir, "nn-{}-{}.h5".format(ii, jj)))
     idx_sort, ratio_test, mutual_nearest = nn_info["idx_sort"], nn_info["ratio_test"], nn_info["mutual_nearest"]
     x2 = x2[idx_sort[1],:]
     xs = np.concatenate([x1, x2], axis=1).reshape(1,-1,4)
     geod_d = get_episym(x1, x2, dR, dt)
     ys = geod_d.reshape(-1,1)
     return xs, ys, dR, dt, ratio_test, mutual_nearest, cx1, cy1, f1, cx2, cy2, f2
Пример #2
0
 def getxy(idx_i, idx_j, kpi, kpj, idx_sort, geom, geom_type):
     # ------------------------------
     # Get dR
     R_i = parse_geom(geom, geom_type)["R"][idx_i]
     R_j = parse_geom(geom, geom_type)["R"][idx_j]
     dR = np.dot(R_j, R_i.T)
     # Get dt
     t_i = parse_geom(geom, geom_type)["t"][idx_i].reshape([3, 1])
     t_j = parse_geom(geom, geom_type)["t"][idx_j].reshape([3, 1])
     dt = t_j - np.dot(dR, t_i)
     # ------------------------------
     # Get sift points for the first image
     x1 = kpi
     x2 = kpj 
     # ------------------------------
     # create x1, y1, x2, y2 as a matrix combo
     x1mat = np.repeat(x1[:, 0][..., None], len(x2), axis=-1)
     y1mat = np.repeat(x1[:, 1][..., None], len(x2), axis=1)
     x2mat = np.repeat(x2[:, 0][None], len(x1), axis=0)
     y2mat = np.repeat(x2[:, 1][None], len(x1), axis=0)
     # Move back to tuples
     idx_sort = (idx_sort[0], idx_sort[1])
     x1mat = x1mat[idx_sort]
     y1mat = y1mat[idx_sort]
     x2mat = x2mat[idx_sort]
     y2mat = y2mat[idx_sort]
     # Turn into x1, x2
     x1 = np.concatenate(
         [x1mat.reshape(-1, 1), y1mat.reshape(-1, 1)], axis=1)
     x2 = np.concatenate(
         [x2mat.reshape(-1, 1), y2mat.reshape(-1, 1)], axis=1)
     # make xs in NHWC
     xs = np.concatenate([x1, x2], axis=1).T.reshape(4, 1, -1).transpose((1, 2, 0))
     # ------------------------------
     # Get the geodesic distance using with x1, x2, dR, dt
     geod_d = get_episym(x1, x2, dR, dt)
     ys = geod_d
     # Save R, t for evaluation
     Rs = np.array(dR).reshape(3, 3)
     # normalize t before saving
     dtnorm = np.sqrt(np.sum(dt**2))
     assert (dtnorm > 1e-5)
     dt /= dtnorm
     ts = np.array(dt).flatten() 
     return xs, ys, Rs, ts
Пример #3
0
def make_xy(pair_index, img, kp, desc, aff, K, R, t, cur_folder):
    kp_initial = copy.deepcopy(kp)
    xs = []
    xs_initial = []
    ys = []
    Rs = []
    ts = []
    img1s = []
    img2s = []
    cx1s = []
    cy1s = []
    f1s = []
    cx2s = []
    cy2s = []
    f2s = []
    affine = []
    # Create a random folder in scratch
    dump_dir = os.path.join(cur_folder, "dump")
    if not os.path.exists(dump_dir):
        os.makedirs(dump_dir)

    pool_arg = []

    for idx in range(pair_index.shape[0]):
        ii = pair_index[idx, 0]
        jj = pair_index[idx, 1]

        print("\rExtracting keypoints {} / {}".format(idx,
                                                      pair_index.shape[0]),
              end="")
        sys.stdout.flush()

        # Check and extract keypoints if necessary
        for i in [ii, jj]:
            i = int(i)
            dump_file = os.path.join(dump_dir, "kp-aff-desc-{}.h5".format(i))
            if not os.path.exists(dump_file):
                # Correct coordinates using K
                cx = K[i, 2]
                cy = K[i, 5]

                # Correct focals
                fx = K[i, 0]
                fy = K[i, 4]

                kp[i] = (kp[i] - np.array([[cx, cy]])) / np.asarray([[fx, fy]])

                # Write descs to harddisk to parallize
                dump_dict = {}
                dump_dict["kp_normal"] = kp[i]
                dump_dict["kp"] = kp_initial[i]
                dump_dict["desc"] = desc[i]
                dump_dict["aff"] = aff[i]
                saveh5(dump_dict, dump_file)
            else:
                dump_dict = loadh5(dump_file)
                kp[i] = dump_dict["kp_normal"]
                kp_initial[i] = dump_dict["kp"]
                desc[i] = dump_dict["desc"]
                aff[i] = dump_dict["aff"]

        pool_arg += [(dump_dir, idx, int(ii), int(jj))]
    print("")

    # Run mp job
    ratio_CPU = 0.9
    number_of_process = int(ratio_CPU * mp.cpu_count())
    pool = mp.Pool(processes=number_of_process)
    manager = mp.Manager()
    queue = manager.Queue()
    for idx_arg in xrange(len(pool_arg)):
        pool_arg[idx_arg] = pool_arg[idx_arg] + (queue, )
    # map async
    pool_res = pool.map_async(dump_data_pair, pool_arg)
    # monitor loop
    while True:
        if pool_res.ready():
            break
        else:
            size = queue.qsize()
            print("\rDistMat {} / {}".format(size, len(pool_arg)), end="")
            sys.stdout.flush()
            time.sleep(1)
    pool.close()
    pool.join()
    print("")
    # Pack data
    idx = 0
    total_num = 0
    good_num = 0
    bad_num = 0
    ratio1 = []
    ratio2 = []

    for idx in range(pair_index.shape[0]):
        ii = int(pair_index[idx, 0])
        jj = int(pair_index[idx, 1])

        print("\rWorking on {} / {}".format(idx, pair_index.shape[0]), end="")
        sys.stdout.flush()

        K1 = K[ii].reshape(3, 3)
        K2 = K[jj].reshape(3, 3)

        # ------------------------------
        # Get dR
        R_i = R[ii].reshape(3, 3)
        R_j = R[jj].reshape(3, 3)
        dR = np.dot(R_j, R_i.T)
        # Get dt
        t_i = t[ii].reshape(3, 1)
        t_j = t[jj].reshape(3, 1)
        dt = t_j - np.dot(dR, t_i)
        # ------------------------------
        # Get keypoints for the first image
        x1 = kp[ii]
        y1 = np.concatenate((kp[ii], np.ones((kp[ii].shape[0], 1))), axis=1)
        # Project the first points into the second image
        y1p = np.matmul(dR[None], y1[..., None]) + dt[None]
        # move back to the canonical plane
        x1p = y1p[:, :2, 0] / y1p[:, 2, 0][..., None]
        # ------------------------------
        # Get keypoints for the second image
        x2 = kp[jj]
        # # DEBUG ------------------------------
        # # Check if the image projections make sense
        # draw_val_res(
        #     img[ii],
        #     img[jj],
        #     x1, x1p, np.random.rand(x1.shape[0]) < 0.1,
        #     (img[ii][0].shape[1] - 1.0) * 0.5,
        #     (img[ii][0].shape[0] - 1.0) * 0.5,
        #     parse_geom(geom, geom_type)["K"][ii, 0, 0],
        #     (img[jj][0].shape[1] - 1.0) * 0.5,
        #     (img[jj][0].shape[0] - 1.0) * 0.5,
        #     parse_geom(geom, geom_type)["K"][jj, 0, 0],
        #     "./debug_imgs/",
        #     "debug_img{:04d}.png".format(idx)
        # )
        # ------------------------------
        # create x1, y1, x2, y2 as a matrix combo
        x1mat = np.repeat(x1[:, 0][..., None], len(x2), axis=-1)
        y1mat = np.repeat(x1[:, 1][..., None], len(x2), axis=1)
        x1pmat = np.repeat(x1p[:, 0][..., None], len(x2), axis=-1)
        y1pmat = np.repeat(x1p[:, 1][..., None], len(x2), axis=1)
        x2mat = np.repeat(x2[:, 0][None], len(x1), axis=0)
        y2mat = np.repeat(x2[:, 1][None], len(x1), axis=0)
        # Load precomputed nearest neighbors
        idx_sort = loadh5(
            os.path.join(dump_dir, "idx_sort-{}-{}.h5".format(ii,
                                                              jj)))["idx_sort"]
        # Move back to tuples
        idx_sort = (idx_sort[0], idx_sort[1])
        x1mat = x1mat[idx_sort]
        y1mat = y1mat[idx_sort]
        x1pmat = x1pmat[idx_sort]
        y1pmat = y1pmat[idx_sort]
        x2mat = x2mat[idx_sort]
        y2mat = y2mat[idx_sort]
        # Turn into x1, x1p, x2
        x1 = np.concatenate(
            [x1mat.reshape(-1, 1), y1mat.reshape(-1, 1)], axis=1)
        x1p = np.concatenate([x1pmat.reshape(-1, 1),
                              y1pmat.reshape(-1, 1)],
                             axis=1)
        x2 = np.concatenate(
            [x2mat.reshape(-1, 1), y2mat.reshape(-1, 1)], axis=1)

        # make xs in NHWC
        xs += [
            np.concatenate([x1, x2], axis=1).T.reshape(4, 1, -1).transpose(
                (1, 2, 0))
        ]
        # ------------------------------
        # Get the geodesic distance using with x1, x2, dR, dt

        if config.obj_geod_type == "sampson":
            geod_d = get_sampsons(x1, x2, dR, dt)
        elif config.obj_geod_type == "episqr":
            geod_d = get_episqr(x1, x2, dR, dt)
        elif config.obj_geod_type == "episym":
            geod_d = get_episym(x1, x2, dR, dt)
        #   geod_d = get_episym(x1, x2, dR, dt, K1_inv, K2_inv, K1, K2)
        # Get *rough* reprojection errors. Note that the depth may be noisy. We
        # ended up not using this...
        reproj_d = np.sum((x2 - x1p)**2, axis=1)
        # count inliers and outliers
        total_num += len(geod_d)
        good_num += np.sum((geod_d < config.obj_geod_th))
        bad_num += np.sum((geod_d >= config.obj_geod_th))
        '''
        mask = np.zeros(len(geod_d))
        for i in range(len(geod_d)):
            if geod_d[i] < config.obj_geod_th:
                mask[i] = 1
        np.savetxt(os.path.join(dump_dir, "mask-{}-{}.txt".format(ii, jj)), mask)
        '''
        ys += [np.stack([geod_d, reproj_d], axis=1)]

        # Save R, t for evaluation
        Rs += [np.array(dR).reshape(3, 3)]
        # normalize t before saving
        dtnorm = np.sqrt(np.sum(dt**2))
        assert (dtnorm > 1e-5)
        dt /= dtnorm
        ts += [np.array(dt).flatten()]

        # Save img1 and img2 for display
        img1s += [img[ii]]
        img2s += [img[jj]]

        cx = K[ii, 2]
        cy = K[ii, 5]
        cx1s += [cx]
        cy1s += [cy]
        cx = K[jj, 2]
        cy = K[jj, 5]
        cx2s += [cx]
        cy2s += [cy]

        fx = K[ii, 0]
        fy = K[ii, 4]
        if np.isclose(fx, fy):
            f = fx
        else:
            f = (fx, fy)
        f1s += [f]
        fx = K[jj, 0]
        fy = K[jj, 4]
        if np.isclose(fx, fy):
            f = fx
        else:
            f = (fx, fy)
        f2s += [f]

        # Generate xs_initial and T-transform
        x1 = kp_initial[ii]
        x2 = kp_initial[jj]

        aff1 = aff[ii]
        aff2 = aff[jj]

        aff1 = np.repeat(aff1[:, :][..., None], len(aff2),
                         axis=-1).transpose(0, 2, 1)
        aff2 = np.repeat(aff2[:, :][None], len(aff1), axis=0)

        x1mat = np.repeat(x1[:, 0][..., None], len(x2), axis=-1)
        y1mat = np.repeat(x1[:, 1][..., None], len(x2), axis=1)
        x2mat = np.repeat(x2[:, 0][None], len(x1), axis=0)
        y2mat = np.repeat(x2[:, 1][None], len(x1), axis=0)
        idx_sort = loadh5(
            os.path.join(dump_dir, "idx_sort-{}-{}.h5".format(ii,
                                                              jj)))["idx_sort"]
        # Move back to tuples
        idx_sort = (idx_sort[0], idx_sort[1])
        x1mat = x1mat[idx_sort]
        y1mat = y1mat[idx_sort]
        x2mat = x2mat[idx_sort]
        y2mat = y2mat[idx_sort]
        aff1 = aff1[idx_sort]
        aff2 = aff2[idx_sort]

        # Turn into x1, x1p, x2
        x1 = np.concatenate(
            [x1mat.reshape(-1, 1), y1mat.reshape(-1, 1)], axis=1)
        x2 = np.concatenate(
            [x2mat.reshape(-1, 1), y2mat.reshape(-1, 1)], axis=1)

        affine += [
            np.concatenate(
                [aff1.reshape(-1, 9), aff2.reshape(-1, 9)], axis=1)
        ]
        xs_initial += [
            np.concatenate([x1, x2], axis=1).T.reshape(4, 1, -1).transpose(
                (1, 2, 0))
        ]

    print("")
    # Do *not* convert to numpy arrays, as the number of keypoints may differ
    # now. Simply return it
    print(".... done")
    if total_num > 0:
        print(" Good pairs = {}, Total pairs = {}, Ratio = {}".format(
            good_num, total_num,
            float(good_num) / float(total_num)))
        print(" Bad pairs = {}, Total pairs = {}, Ratio = {}".format(
            bad_num, total_num,
            float(bad_num) / float(total_num)))

    res_dict = {}
    res_dict["xs"] = xs
    res_dict["xs_initial"] = xs_initial
    res_dict["affine"] = affine
    res_dict["ys"] = ys
    res_dict["Rs"] = Rs
    res_dict["ts"] = ts
    res_dict["img1s"] = img1s
    res_dict["cx1s"] = cx1s
    res_dict["cy1s"] = cy1s
    res_dict["f1s"] = f1s
    res_dict["img2s"] = img2s
    res_dict["cx2s"] = cx2s
    res_dict["cy2s"] = cy2s
    res_dict["f2s"] = f2s

    return res_dict
Пример #4
0
def make_xy(num_sample, pairs, kp, z, desc, img, geom, vis, depth, geom_type,
            cur_folder):

    xs = []
    ys = []
    Rs = []
    ts = []
    mutuals = []
    ratios = []
    img1s = []
    img2s = []
    cx1s = []
    cy1s = []
    f1s = []
    cx2s = []
    cy2s = []
    f2s = []

    # Create a random folder in scratch
    dump_dir = os.path.join(cur_folder, "dump")
    if not os.path.exists(dump_dir):
        os.makedirs(dump_dir)

    # randomly suffle the pairs and select num_sample amount
    np.random.seed(1234)
    cur_pairs = [
        pairs[_i] for _i in np.random.permutation(len(pairs))[:num_sample]
    ]
    idx = 0
    for ii, jj in cur_pairs:
        idx += 1
        print(
            "\rExtracting keypoints {} / {}".format(idx, len(cur_pairs)),
            end="")
        sys.stdout.flush()

        # Check and extract keypoints if necessary
        for i in [ii, jj]:
            dump_file = os.path.join(dump_dir, "kp-z-desc-{}.h5".format(i))
            if not os.path.exists(dump_file):
                if kp[i] is None:
                    cv_kp, cv_desc = sift.detectAndCompute(img[i].transpose(
                        1, 2, 0), None)
                    cx = (img[i][0].shape[1] - 1.0) * 0.5
                    cy = (img[i][0].shape[0] - 1.0) * 0.5
                    # Correct coordinates using K
                    cx += parse_geom(geom, geom_type)["K"][i, 0, 2]
                    cy += parse_geom(geom, geom_type)["K"][i, 1, 2]
                    xy = np.array([_kp.pt for _kp in cv_kp])
                    # Correct focals
                    fx = parse_geom(geom, geom_type)["K"][i, 0, 0]
                    fy = parse_geom(geom, geom_type)["K"][i, 1, 1]
                    kp[i] = (
                        xy - np.array([[cx, cy]])
                    ) / np.asarray([[fx, fy]])
                    desc[i] = cv_desc
                if z[i] is None:
                    cx = (img[i][0].shape[1] - 1.0) * 0.5
                    cy = (img[i][0].shape[0] - 1.0) * 0.5
                    fx = parse_geom(geom, geom_type)["K"][i, 0, 0]
                    fy = parse_geom(geom, geom_type)["K"][i, 1, 1]
                    xy = kp[i] * np.asarray([[fx, fy]]) + np.array([[cx, cy]])
                    if len(depth) > 0:
                        z[i] = depth[i][
                            0,
                            np.round(xy[:, 1]).astype(int),
                            np.round(xy[:, 0]).astype(int)][..., None]
                    else:
                        z[i] = np.ones((xy.shape[0], 1))
                # Write descs to harddisk to parallize
                dump_dict = {}
                dump_dict["kp"] = kp[i]
                dump_dict["z"] = z[i]
                dump_dict["desc"] = desc[i]
                saveh5(dump_dict, dump_file)
            else:
                dump_dict = loadh5(dump_file)
                kp[i] = dump_dict["kp"]
                z[i] = dump_dict["z"]
                desc[i] = dump_dict["desc"]
    print("")

    # Create arguments
    pool_arg = []
    idx = 0
    for ii, jj in cur_pairs:
        idx += 1
        pool_arg += [(dump_dir, idx, ii, jj)]
    # Run mp job
    ratio_CPU = 0.8
    number_of_process = int(ratio_CPU * mp.cpu_count())
    pool = mp.Pool(processes=number_of_process)
    manager = mp.Manager()
    queue = manager.Queue()

    # for debugging in dump_data_pair
    # dump_data_pair(pool_arg[1] + (queue,))

    for idx_arg in xrange(len(pool_arg)):
        pool_arg[idx_arg] = pool_arg[idx_arg] + (queue,)
    # map async
    pool_res = pool.map_async(dump_data_pair, pool_arg)
    # monitor loop
    while True:
        if pool_res.ready():
            break
        else:
            size = queue.qsize()
            print("\rDistMat {} / {}".format(size, len(pool_arg)), end="")
            sys.stdout.flush()
            time.sleep(1)
    pool.close()
    pool.join()
    print("")
    # Pack data
    idx = 0
    total_num = 0
    good_num = 0
    bad_num = 0
    for ii, jj in cur_pairs:
        idx += 1
        print("\rWorking on {} / {}".format(idx, len(cur_pairs)), end="")
        sys.stdout.flush()

        # ------------------------------
        # Get dR
        R_i = parse_geom(geom, geom_type)["R"][ii]
        R_j = parse_geom(geom, geom_type)["R"][jj]
        dR = np.dot(R_j, R_i.T)
        # Get dt
        t_i = parse_geom(geom, geom_type)["t"][ii].reshape([3, 1])
        t_j = parse_geom(geom, geom_type)["t"][jj].reshape([3, 1])
        dt = t_j - np.dot(dR, t_i)
        # ------------------------------
        # Get sift points for the first image
        x1 = kp[ii]
        y1 = np.concatenate([kp[ii] * z[ii], z[ii]], axis=1)
        # Project the first points into the second image
        y1p = np.matmul(dR[None], y1[..., None]) + dt[None]
        # move back to the canonical plane
        x1p = y1p[:, :2, 0] / y1p[:, 2, 0][..., None]
        # ------------------------------
        # Get sift points for the second image
        x2 = kp[jj]
        # # DEBUG ------------------------------
        # # Check if the image projections make sense
        # draw_val_res(
        #     img[ii],
        #     img[jj],
        #     x1, x1p, np.random.rand(x1.shape[0]) < 0.1,
        #     (img[ii][0].shape[1] - 1.0) * 0.5,
        #     (img[ii][0].shape[0] - 1.0) * 0.5,
        #     parse_geom(geom, geom_type)["K"][ii, 0, 0],
        #     (img[jj][0].shape[1] - 1.0) * 0.5,
        #     (img[jj][0].shape[0] - 1.0) * 0.5,
        #     parse_geom(geom, geom_type)["K"][jj, 0, 0],
        #     "./debug_imgs/",
        #     "debug_img{:04d}.png".format(idx)
        # )
        # ------------------------------
        # create x1, y1, x2, y2 as a matrix combo
        x1mat = np.repeat(x1[:, 0][..., None], len(x2), axis=-1)
        y1mat = np.repeat(x1[:, 1][..., None], len(x2), axis=1)
        x1pmat = np.repeat(x1p[:, 0][..., None], len(x2), axis=-1)
        y1pmat = np.repeat(x1p[:, 1][..., None], len(x2), axis=1)
        x2mat = np.repeat(x2[:, 0][None], len(x1), axis=0)
        y2mat = np.repeat(x2[:, 1][None], len(x1), axis=0)
        # Load precomputed nearest neighbors, ratios and mutual
        idx_sort = loadh5(os.path.join(
            dump_dir, "idx_sort-{}-{}.h5".format(ii, jj)))["idx_sort"]
        mutual = loadh5(os.path.join(
            dump_dir, "mutual_ratio-{}-{}.h5".format(ii, jj)))["mutual"]
        ratio = loadh5(os.path.join(
            dump_dir, "mutual_ratio-{}-{}.h5".format(ii, jj)))["ratio"]
        mutuals += [mutual]
        ratios += [ratio]
        

        # Move back to tuples
        idx_sort = (idx_sort[0], idx_sort[1])
        x1mat = x1mat[idx_sort]
        y1mat = y1mat[idx_sort]
        x1pmat = x1pmat[idx_sort]
        y1pmat = y1pmat[idx_sort]
        x2mat = x2mat[idx_sort]
        y2mat = y2mat[idx_sort]
        # Turn into x1, x1p, x2
        x1 = np.concatenate(
            [x1mat.reshape(-1, 1), y1mat.reshape(-1, 1)], axis=1)
        x1p = np.concatenate(
            [x1pmat.reshape(-1, 1),
             y1pmat.reshape(-1, 1)], axis=1)
        x2 = np.concatenate(
            [x2mat.reshape(-1, 1), y2mat.reshape(-1, 1)], axis=1)

        # make xs in NHWC
        xs += [
            np.concatenate([x1, x2], axis=1).T.reshape(4, 1, -1).transpose(
                (1, 2, 0))
        ]

        # ------------------------------
        # Get the geodesic distance using with x1, x2, dR, dt
        if config.obj_geod_type == "sampson":
            geod_d = get_sampsons(x1, x2, dR, dt)
        elif config.obj_geod_type == "episqr":
            geod_d = get_episqr(x1, x2, dR, dt)
        elif config.obj_geod_type == "episym":
            geod_d = get_episym(x1, x2, dR, dt)
        # Get *rough* reprojection errors. Note that the depth may be noisy. We
        # ended up not using this...
        reproj_d = np.sum((x2 - x1p)**2, axis=1)
        # count inliers and outliers
        total_num += len(geod_d)
        good_num += np.sum((geod_d < config.obj_geod_th))
        bad_num += np.sum((geod_d >= config.obj_geod_th))
        ys += [np.stack([geod_d, reproj_d], axis=1)]
        # Save R, t for evaluation
        Rs += [np.array(dR).reshape(3, 3)]
        # normalize t before saving
        dtnorm = np.sqrt(np.sum(dt**2))
        assert (dtnorm > 1e-5)
        dt /= dtnorm
        ts += [np.array(dt).flatten()]

        # Save img1 and img2 for display
        img1s += [img[ii]]
        img2s += [img[jj]]
        cx = (img[ii][0].shape[1] - 1.0) * 0.5
        cy = (img[ii][0].shape[0] - 1.0) * 0.5
        # Correct coordinates using K
        cx += parse_geom(geom, geom_type)["K"][ii, 0, 2]
        cy += parse_geom(geom, geom_type)["K"][ii, 1, 2]
        fx = parse_geom(geom, geom_type)["K"][ii, 0, 0]
        fy = parse_geom(geom, geom_type)["K"][ii, 1, 1]
        if np.isclose(fx, fy):
            f = fx
        else:
            f = (fx, fy)
        cx1s += [cx]
        cy1s += [cy]
        f1s += [f]
        cx = (img[jj][0].shape[1] - 1.0) * 0.5
        cy = (img[jj][0].shape[0] - 1.0) * 0.5
        # Correct coordinates using K
        cx += parse_geom(geom, geom_type)["K"][jj, 0, 2]
        cy += parse_geom(geom, geom_type)["K"][jj, 1, 2]
        fx = parse_geom(geom, geom_type)["K"][jj, 0, 0]
        fy = parse_geom(geom, geom_type)["K"][jj, 1, 1]
        if np.isclose(fx, fy):
            f = fx
        else:
            f = (fx, fy)
        cx2s += [cx]
        cy2s += [cy]
        f2s += [f]

    # Do *not* convert to numpy arrays, as the number of keypoints may differ
    # now. Simply return it
    print(".... done")
    if total_num > 0:
        print(" Good pairs = {}, Total pairs = {}, Ratio = {}".format(
            good_num, total_num, float(good_num) / float(total_num)))
        print(" Bad pairs = {}, Total pairs = {}, Ratio = {}".format(
            bad_num, total_num, float(bad_num) / float(total_num)))

    res_dict = {}
    res_dict["xs"] = xs
    res_dict["ys"] = ys
    res_dict["Rs"] = Rs
    res_dict["ts"] = ts
    res_dict["img1s"] = img1s
    res_dict["cx1s"] = cx1s
    res_dict["cy1s"] = cy1s
    res_dict["f1s"] = f1s
    res_dict["img2s"] = img2s
    res_dict["cx2s"] = cx2s
    res_dict["cy2s"] = cy2s
    res_dict["f2s"] = f2s
    res_dict["mutuals"] = mutuals
    res_dict["ratios"] = ratios 
    res_dict["pairs"] = cur_pairs

    return res_dict