Пример #1
0
def draw_grid(image, cp_norm):
    im_size = torch.Tensor([[240, 240]]).cuda()
    cp = PointsToPixelCoords(P=cp_norm, im_size=im_size)
    cp = cp.squeeze().cpu().numpy() + 50
    for j in range(9):
        cv2.drawMarker(image, (cp[0, j], cp[1, j]), (0, 0, 255), cv2.MARKER_TILTED_CROSS, 12, 2, cv2.LINE_AA)

    for j in range(2):
        for k in range(3):
            # vertical grid
            cv2.line(image, (cp[0, j + k * 3], cp[1, j + k * 3]), (cp[0, j + k * 3 + 1], cp[1, j + k * 3 + 1]), (0, 0, 255), 2, cv2.LINE_AA)
            # horizontal grid
            cv2.line(image, (cp[0, j * 3 + k], cp[1, j * 3 + k]), (cp[0, j * 3 + k + 3], cp[1, j * 3 + k + 3]), (0, 0, 255), 2, cv2.LINE_AA)

    return image
Пример #2
0
def pck_metric(batch, batch_start_idx, theta_det, theta_aff, theta_tps,
               theta_afftps, results, args):
    alpha = args.pck_alpha
    do_det = theta_det is not None
    do_aff = theta_aff is not None
    do_tps = theta_tps is not None
    do_aff_tps = theta_afftps is not None

    source_im_size = batch['source_im_info'][:, 0:3]
    target_im_size = batch['target_im_info'][:, 0:3]

    source_points = batch['source_points']
    target_points = batch['target_points']

    # Instantiate point transformer
    pt = PointTnf(use_cuda=args.cuda, tps_reg_factor=args.tps_reg_factor)
    # pt = PointTnf(use_cuda=args.cuda)

    # warp points with estimated transformations
    target_points_norm = PointsToUnitCoords(P=target_points,
                                            im_size=target_im_size)

    if do_det:
        # Affine transformation only based on object detection
        warped_points_det_norm = pt.affPointTnf(theta=theta_det,
                                                points=target_points_norm)
        warped_points_det = PointsToPixelCoords(P=warped_points_det_norm,
                                                im_size=source_im_size)

    if do_aff:
        # do affine only
        warped_points_aff_norm = pt.affPointTnf(theta=theta_aff,
                                                points=target_points_norm)
        if do_det:
            warped_points_aff_norm = pt.affPointTnf(
                theta=theta_det, points=warped_points_aff_norm)
        warped_points_aff = PointsToPixelCoords(P=warped_points_aff_norm,
                                                im_size=source_im_size)

    if do_tps:
        # do tps only
        warped_points_tps_norm = pt.tpsPointTnf(theta=theta_tps,
                                                points=target_points_norm)
        warped_points_tps = PointsToPixelCoords(P=warped_points_tps_norm,
                                                im_size=source_im_size)

    if do_aff_tps:
        # do tps+affine
        warped_points_aff_tps_norm = pt.tpsPointTnf(theta=theta_afftps,
                                                    points=target_points_norm)
        warped_points_aff_tps_norm = pt.affPointTnf(
            theta=theta_aff, points=warped_points_aff_tps_norm)
        if do_det:
            warped_points_aff_tps_norm = pt.affPointTnf(
                theta=theta_det, points=warped_points_aff_tps_norm)
        warped_points_aff_tps = PointsToPixelCoords(
            P=warped_points_aff_tps_norm, im_size=source_im_size)

    L_pck = batch['L_pck']

    current_batch_size = batch['source_im_info'].size(0)
    indices = range(batch_start_idx, batch_start_idx + current_batch_size)

    # import pdb; pdb.set_trace()
    if do_det:
        pck_det = pck(source_points, warped_points_det, L_pck, alpha)

    if do_aff:
        pck_aff = pck(source_points, warped_points_aff, L_pck, alpha)

    if do_tps:
        pck_tps = pck(source_points, warped_points_tps, L_pck, alpha)

    if do_aff_tps:
        pck_aff_tps = pck(source_points, warped_points_aff_tps, L_pck, alpha)

    if do_det:
        results['det']['pck'][indices] = pck_det.unsqueeze(1).cpu().numpy()
    if do_aff:
        if do_det:
            key = 'det_aff'
        else:
            key = 'aff'
        results[key]['pck'][indices] = pck_aff.unsqueeze(1).cpu().numpy()
    if do_tps:
        results['tps']['pck'][indices] = pck_tps.unsqueeze(1).cpu().numpy()
    if do_aff_tps:
        if do_det:
            key = 'det_aff_tps'
        else:
            key = 'afftps'
        results[key]['pck'][indices] = pck_aff_tps.unsqueeze(1).cpu().numpy()

    return results
Пример #3
0
def vis_pf(vis,
           dataloader,
           theta,
           theta_weak,
           theta_inver,
           theta_weak_inver,
           results,
           results_weak,
           dataset_name,
           use_cuda=True):
    # Visualize watch images
    affTnf = GeometricTnf(geometric_model='affine', use_cuda=use_cuda)
    tpsTnf = GeometricTnf(geometric_model='tps', use_cuda=use_cuda)
    pt = PointTnf(use_cuda=use_cuda)

    watch_images = torch.ones(len(dataloader) * 6, 3, 280, 240)
    watch_keypoints = -torch.ones(len(dataloader) * 6, 2, 20)
    if use_cuda:
        watch_images = watch_images.cuda()
        watch_keypoints = watch_keypoints.cuda()
    num_points = np.ones(len(dataloader) * 6).astype(np.int8)
    correct_index = list()
    image_names = list()
    metrics = list()

    # Colors for keypoints
    cmap = plt.get_cmap('tab20')
    colors = list()
    for c in range(20):
        r = cmap(c)[0] * 255
        g = cmap(c)[1] * 255
        b = cmap(c)[2] * 255
        colors.append((b, g, r))
    fnt = cv2.FONT_HERSHEY_COMPLEX

    # means for normalize of caffe resnet and vgg
    # pixel_means = torch.Tensor(np.array([[[[102.9801, 115.9465, 122.7717]]]]).astype(np.float32))
    for batch_idx, batch in enumerate(dataloader):
        if use_cuda:
            batch = batch_cuda(batch)

        # Theta and theta_inver
        theta_aff = theta['aff'][batch_idx].unsqueeze(0)
        theta_aff_tps = theta['aff_tps'][batch_idx].unsqueeze(0)
        theta_weak_aff = theta_weak['aff'][batch_idx].unsqueeze(0)
        theta_weak_aff_tps = theta_weak['aff_tps'][batch_idx].unsqueeze(0)

        theta_aff_inver = theta_inver['aff'][batch_idx].unsqueeze(0)
        theta_aff_tps_inver = theta_inver['aff_tps'][batch_idx].unsqueeze(0)
        theta_weak_aff_inver = theta_weak_inver['aff'][batch_idx].unsqueeze(0)
        theta_weak_aff_tps_inver = theta_weak_inver['aff_tps'][
            batch_idx].unsqueeze(0)

        # Warped image
        warped_aff = affTnf(batch['source_image'], theta_aff)
        warped_aff_tps = tpsTnf(warped_aff, theta_aff_tps)
        warped_weak_aff = affTnf(batch['source_image'], theta_weak_aff)
        warped_weak_aff_tps = tpsTnf(warped_weak_aff, theta_weak_aff_tps)

        watch_images[batch_idx * 6, :, 0:240, :] = batch['source_image']
        watch_images[batch_idx * 6 + 1, :, 0:240, :] = warped_aff
        watch_images[batch_idx * 6 + 2, :, 0:240, :] = warped_aff_tps
        watch_images[batch_idx * 6 + 3, :, 0:240, :] = batch['target_image']
        watch_images[batch_idx * 6 + 4, :, 0:240, :] = warped_weak_aff
        watch_images[batch_idx * 6 + 5, :, 0:240, :] = warped_weak_aff_tps

        # Warped keypoints
        source_im_size = batch['source_im_info'][:, 0:3]
        target_im_size = batch['target_im_info'][:, 0:3]

        source_points = batch['source_points']
        target_points = batch['target_points']

        source_points_norm = PointsToUnitCoords(P=source_points,
                                                im_size=source_im_size)
        target_points_norm = PointsToUnitCoords(P=target_points,
                                                im_size=target_im_size)

        warped_points_aff_norm = pt.affPointTnf(theta=theta_aff_inver,
                                                points=source_points_norm)
        warped_points_aff = PointsToPixelCoords(P=warped_points_aff_norm,
                                                im_size=target_im_size)
        pck_aff, index_aff, N_pts = pck(target_points, warped_points_aff,
                                        dataset_name)
        warped_points_aff = relocate(warped_points_aff, target_im_size)

        warped_points_aff_tps_norm = pt.tpsPointTnf(theta=theta_aff_tps_inver,
                                                    points=source_points_norm)
        warped_points_aff_tps_norm = pt.affPointTnf(
            theta=theta_aff_inver, points=warped_points_aff_tps_norm)
        warped_points_aff_tps = PointsToPixelCoords(
            P=warped_points_aff_tps_norm, im_size=target_im_size)
        pck_aff_tps, index_aff_tps, _ = pck(target_points,
                                            warped_points_aff_tps,
                                            dataset_name)
        warped_points_aff_tps = relocate(warped_points_aff_tps, target_im_size)

        warped_points_weak_aff_norm = pt.affPointTnf(
            theta=theta_weak_aff_inver, points=source_points_norm)
        warped_points_weak_aff = PointsToPixelCoords(
            P=warped_points_weak_aff_norm, im_size=target_im_size)
        pck_weak_aff, index_weak_aff, _ = pck(target_points,
                                              warped_points_weak_aff,
                                              dataset_name)
        warped_points_weak_aff = relocate(warped_points_weak_aff,
                                          target_im_size)

        warped_points_weak_aff_tps_norm = pt.tpsPointTnf(
            theta=theta_weak_aff_tps_inver, points=source_points_norm)
        warped_points_weak_aff_tps_norm = pt.affPointTnf(
            theta=theta_weak_aff_inver, points=warped_points_weak_aff_tps_norm)
        warped_points_weak_aff_tps = PointsToPixelCoords(
            P=warped_points_weak_aff_tps_norm, im_size=target_im_size)
        pck_weak_aff_tps, index_weak_aff_tps, _ = pck(
            target_points, warped_points_weak_aff_tps, dataset_name)
        warped_points_weak_aff_tps = relocate(warped_points_weak_aff_tps,
                                              target_im_size)

        watch_keypoints[batch_idx * 6, :, :N_pts] = relocate(
            batch['source_points'], source_im_size)[:, :, :N_pts]
        watch_keypoints[batch_idx * 6 +
                        1, :, :N_pts] = warped_points_aff[:, :, :N_pts]
        watch_keypoints[batch_idx * 6 +
                        2, :, :N_pts] = warped_points_aff_tps[:, :, :N_pts]
        watch_keypoints[batch_idx * 6 + 3, :, :N_pts] = relocate(
            batch['target_points'], target_im_size)[:, :, :N_pts]
        watch_keypoints[batch_idx * 6 +
                        4, :, :N_pts] = warped_points_weak_aff[:, :, :N_pts]
        watch_keypoints[
            batch_idx * 6 +
            5, :, :N_pts] = warped_points_weak_aff_tps[:, :, :N_pts]

        num_points[batch_idx * 6:batch_idx * 6 + 6] = N_pts

        correct_index.append(np.arange(N_pts))
        correct_index.append(index_aff)
        correct_index.append(index_aff_tps)
        correct_index.append(np.arange(N_pts))
        correct_index.append(index_weak_aff)
        correct_index.append(index_weak_aff_tps)

        image_names.append('Source')
        image_names.append('Aff')
        image_names.append('Aff_tps')
        image_names.append('Target')
        image_names.append('Rocco_aff')
        image_names.append('Rocco_aff_tps')

        metrics.append('')
        metrics.append('PCK: {:.2%}'.format(pck_aff))
        metrics.append('PCK: {:.2%}'.format(pck_aff_tps))
        metrics.append('')
        metrics.append('PCK: {:.2%}'.format(pck_weak_aff))
        metrics.append('PCK: {:.2%}'.format(pck_weak_aff_tps))

    opts = dict(jpgquality=100, title=dataset_name)
    # Un-normalize for caffe resnet and vgg
    # watch_images = watch_images.permute(0, 2, 3, 1) + pixel_means
    # watch_images = watch_images[:, :, :, [2, 1, 0]].permute(0, 3, 1, 2)
    # watch_images = normalize_image(watch_images, forward=False) * 255.0
    watch_images[:, :, 0:240, :] = normalize_image(watch_images[:, :,
                                                                0:240, :],
                                                   forward=False)
    watch_images *= 255.0
    watch_images = watch_images.permute(0, 2, 3,
                                        1).cpu().numpy().astype(np.uint8)
    watch_keypoints = watch_keypoints.cpu().numpy()

    for i in range(watch_images.shape[0]):
        pos_name = (80, 255)
        if (i + 1) % 6 == 1 or (i + 1) % 6 == 4:
            pos_pck = (0, 0)
        else:
            pos_pck = (70, 275)
        cv2.putText(watch_images[i], image_names[i], pos_name, fnt, 0.5,
                    (0, 0, 0), 1)
        cv2.putText(watch_images[i], metrics[i], pos_pck, fnt, 0.5, (0, 0, 0),
                    1)
        if (i + 1) % 6 == 4:
            for j in range(num_points[i]):
                cv2.drawMarker(
                    watch_images[i],
                    (watch_keypoints[i, 0, j], watch_keypoints[i, 1, j]),
                    colors[j], cv2.MARKER_DIAMOND, 12, 2, cv2.LINE_AA)
        else:
            for j in correct_index[i]:
                cv2.drawMarker(
                    watch_images[i],
                    (watch_keypoints[i, 0, j], watch_keypoints[i, 1, j]),
                    colors[j], cv2.MARKER_CROSS, 12, 2, cv2.LINE_AA)
                cv2.drawMarker(watch_images[i],
                               (watch_keypoints[i + 3 - (i % 6), 0, j],
                                watch_keypoints[i + 3 - (i % 6), 1, j]),
                               colors[j], cv2.MARKER_DIAMOND, 12, 2,
                               cv2.LINE_AA)

    watch_images = torch.Tensor(watch_images.astype(np.float32))
    watch_images = watch_images.permute(0, 3, 1, 2)
    vis.image(torchvision.utils.make_grid(watch_images, nrow=3, padding=3),
              opts=opts)
Пример #4
0
def vis_pf(vis,
           dataloader,
           theta_1,
           theta_2,
           theta_inver_1,
           theta_inver_2,
           results_1,
           results_2,
           dataset_name,
           use_cuda=True):
    # Visualize watch images
    tpsTnf_1 = GeometricTnf(geometric_model='tps', use_cuda=use_cuda)
    tpsTnf_2 = GeometricTnf2(geometric_model='tps', use_cuda=use_cuda)
    pt_1 = PointTnf(use_cuda=use_cuda)
    pt_2 = PointTPS(use_cuda=use_cuda)

    group_size = 4
    watch_images = torch.ones(len(dataloader) * group_size, 3, 280, 240)
    watch_keypoints = -torch.ones(len(dataloader) * group_size, 2, 20)
    if use_cuda:
        watch_images = watch_images.cuda()
        watch_keypoints = watch_keypoints.cuda()
    num_points = np.ones(len(dataloader) * 6).astype(np.int8)
    correct_index = list()
    image_names = list()
    metrics = list()

    # Colors for keypoints
    cmap = plt.get_cmap('tab20')
    colors = list()
    for c in range(20):
        r = cmap(c)[0] * 255
        g = cmap(c)[1] * 255
        b = cmap(c)[2] * 255
        colors.append((b, g, r))
    fnt = cv2.FONT_HERSHEY_COMPLEX

    # means for normalize of caffe resnet and vgg
    # pixel_means = torch.Tensor(np.array([[[[102.9801, 115.9465, 122.7717]]]]).astype(np.float32))
    for batch_idx, batch in enumerate(dataloader):
        if use_cuda:
            batch = batch_cuda(batch)

        # Theta and theta_inver
        theta_tps_1 = theta_1['tps'][batch_idx].unsqueeze(0)
        theta_tps_2 = theta_2['tps'][batch_idx].unsqueeze(0)

        thetai_tps_1 = theta_inver_1['tps'][batch_idx].unsqueeze(0)
        thetai_tps_2 = theta_inver_2['tps'][batch_idx].unsqueeze(0)

        # Warped image
        warped_tps_1 = tpsTnf_1(batch['source_image'], theta_tps_1)
        warped_tps_2 = tpsTnf_2(batch['source_image'], theta_tps_2)

        watch_images[batch_idx * group_size, :,
                     0:240, :] = batch['source_image']
        watch_images[batch_idx * group_size + 1, :, 0:240, :] = warped_tps_1
        watch_images[batch_idx * group_size + 2, :, 0:240, :] = warped_tps_2
        watch_images[batch_idx * group_size + 3, :,
                     0:240, :] = batch['target_image']

        # Warped keypoints
        source_im_size = batch['source_im_info'][:, 0:3]
        target_im_size = batch['target_im_info'][:, 0:3]

        source_points = batch['source_points']
        target_points = batch['target_points']

        source_points_norm = PointsToUnitCoords(P=source_points,
                                                im_size=source_im_size)
        target_points_norm = PointsToUnitCoords(P=target_points,
                                                im_size=target_im_size)

        warped_points_tps_norm_1 = pt_1.tpsPointTnf(theta=thetai_tps_1,
                                                    points=source_points_norm)
        warped_points_tps_1 = PointsToPixelCoords(P=warped_points_tps_norm_1,
                                                  im_size=target_im_size)
        pck_tps_1, index_tps_1, N_pts = pck(target_points, warped_points_tps_1,
                                            dataset_name)
        warped_points_tps_1 = relocate(warped_points_tps_1, target_im_size)

        warped_points_tps_norm_2 = pt_2.tpsPointTnf(theta=thetai_tps_2,
                                                    points=source_points_norm)
        warped_points_tps_2 = PointsToPixelCoords(P=warped_points_tps_norm_2,
                                                  im_size=target_im_size)
        pck_tps_2, index_tps_2, _ = pck(target_points, warped_points_tps_2,
                                        dataset_name)
        warped_points_tps_2 = relocate(warped_points_tps_2, target_im_size)

        watch_keypoints[batch_idx * group_size, :, :N_pts] = relocate(
            batch['source_points'], source_im_size)[:, :, :N_pts]
        watch_keypoints[batch_idx * group_size +
                        1, :, :N_pts] = warped_points_tps_1[:, :, :N_pts]
        watch_keypoints[batch_idx * group_size +
                        2, :, :N_pts] = warped_points_tps_2[:, :, :N_pts]
        watch_keypoints[batch_idx * group_size + 3, :, :N_pts] = relocate(
            batch['target_points'], target_im_size)[:, :, :N_pts]

        num_points[batch_idx * group_size:batch_idx * group_size +
                   group_size] = N_pts

        correct_index.append(np.arange(N_pts))
        correct_index.append(index_tps_1)
        correct_index.append(index_tps_2)
        correct_index.append(np.arange(N_pts))

        image_names.append('Source')
        image_names.append('TPS')
        image_names.append('TPS_Jitter')
        image_names.append('Target')

        metrics.append('')
        metrics.append('PCK: {:.2%}'.format(pck_tps_1))
        metrics.append('PCK: {:.2%}'.format(pck_tps_2))
        metrics.append('')

    opts = dict(jpgquality=100, title=dataset_name)
    # Un-normalize for caffe resnet and vgg
    # watch_images = watch_images.permute(0, 2, 3, 1) + pixel_means
    # watch_images = watch_images[:, :, :, [2, 1, 0]].permute(0, 3, 1, 2)
    # watch_images = normalize_image(watch_images, forward=False) * 255.0
    watch_images[:, :, 0:240, :] = normalize_image(watch_images[:, :,
                                                                0:240, :],
                                                   forward=False)
    watch_images *= 255.0
    watch_images = watch_images.permute(0, 2, 3,
                                        1).cpu().numpy().astype(np.uint8)
    watch_keypoints = watch_keypoints.cpu().numpy()

    for i in range(watch_images.shape[0]):
        pos_name = (80, 255)
        if (i + 1) % group_size == 1 or (i + 1) % group_size == 0:
            pos_pck = (0, 0)
        else:
            pos_pck = (70, 275)
        cv2.putText(watch_images[i], image_names[i], pos_name, fnt, 0.5,
                    (0, 0, 0), 1)
        cv2.putText(watch_images[i], metrics[i], pos_pck, fnt, 0.5, (0, 0, 0),
                    1)
        if (i + 1) % group_size == 0:
            for j in range(num_points[i]):
                cv2.drawMarker(
                    watch_images[i],
                    (watch_keypoints[i, 0, j], watch_keypoints[i, 1, j]),
                    colors[j], cv2.MARKER_DIAMOND, 12, 2, cv2.LINE_AA)
        else:
            for j in correct_index[i]:
                cv2.drawMarker(
                    watch_images[i],
                    (watch_keypoints[i, 0, j], watch_keypoints[i, 1, j]),
                    colors[j], cv2.MARKER_CROSS, 12, 2, cv2.LINE_AA)
                cv2.drawMarker(watch_images[i],
                               (watch_keypoints[i + (group_size - 1) -
                                                (i % group_size), 0, j],
                                watch_keypoints[i + (group_size - 1) -
                                                (i % group_size), 1, j]),
                               colors[j], cv2.MARKER_DIAMOND, 12, 2,
                               cv2.LINE_AA)

    watch_images = torch.Tensor(watch_images.astype(np.float32))
    watch_images = watch_images.permute(0, 3, 1, 2)
    vis.image(torchvision.utils.make_grid(watch_images, nrow=4, padding=5),
              opts=opts)
Пример #5
0
def vis_control(vis,
                dataloader,
                theta_1,
                theta_2,
                dataset_name,
                use_cuda=True):
    # Visualize watch images
    tpsTnf_1 = GeometricTnf(geometric_model='tps', use_cuda=use_cuda)
    tpsTnf_2 = GeometricTnf2(geometric_model='tps', use_cuda=use_cuda)

    group_size = 5
    watch_images = torch.ones(len(dataloader) * group_size, 3, 340, 340)
    if use_cuda:
        watch_images = watch_images.cuda()

    # Colors for keypoints
    cmap = plt.get_cmap('tab20')
    colors = list()
    for c in range(20):
        r = cmap(c)[0] * 255
        g = cmap(c)[1] * 255
        b = cmap(c)[2] * 255
        colors.append((b, g, r))
    fnt = cv2.FONT_HERSHEY_COMPLEX

    # means for normalize of caffe resnet and vgg
    # pixel_means = torch.Tensor(np.array([[[[102.9801, 115.9465, 122.7717]]]]).astype(np.float32))
    for batch_idx, batch in enumerate(dataloader):
        if use_cuda:
            batch = batch_cuda(batch)

        # Theta and theta_inver
        theta_tps_1 = theta_1['tps'][batch_idx].unsqueeze(0)
        theta_tps_2 = theta_2['tps'][batch_idx].unsqueeze(0)

        # Warped image
        warped_tps_1 = tpsTnf_1(batch['source_image'], theta_tps_1)
        warped_tps_2 = tpsTnf_2(batch['source_image'], theta_tps_2)

        watch_images[batch_idx * group_size, :, 50:290,
                     50:290] = batch['source_image']
        watch_images[batch_idx * group_size + 1, :, 50:290,
                     50:290] = warped_tps_1
        watch_images[batch_idx * group_size + 2, :, 50:290,
                     50:290] = batch['source_image']
        watch_images[batch_idx * group_size + 3, :, 50:290,
                     50:290] = warped_tps_2
        watch_images[batch_idx * group_size + 4, :, 50:290,
                     50:290] = batch['target_image']

    opts = dict(jpgquality=100, title=dataset_name)
    watch_images[:, :, 50:290,
                 50:290] = normalize_image(watch_images[:, :, 50:290, 50:290],
                                           forward=False)
    watch_images *= 255.0
    watch_images = watch_images.permute(0, 2, 3,
                                        1).cpu().numpy().astype(np.uint8)

    im_size = torch.Tensor([[240, 240]]).cuda()
    for i in range(watch_images.shape[0]):
        if i % group_size == 0:
            cp_norm = theta_1['tps'][int(i / group_size)].view(1, 2, -1)
            cp = PointsToPixelCoords(P=cp_norm, im_size=im_size)
            cp = cp.squeeze().cpu().numpy() + 50
            for j in range(9):
                cv2.drawMarker(watch_images[i], (cp[0, j], cp[1, j]),
                               (0, 0, 255), cv2.MARKER_TILTED_CROSS, 12, 2,
                               cv2.LINE_AA)

            for j in range(2):
                for k in range(3):
                    # vertical grid
                    cv2.line(watch_images[i],
                             (cp[0, j + k * 3], cp[1, j + k * 3]),
                             (cp[0, j + k * 3 + 1], cp[1, j + k * 3 + 1]),
                             (0, 0, 255), 2, cv2.LINE_AA)
                    # horizontal grid
                    cv2.line(watch_images[i],
                             (cp[0, j * 3 + k], cp[1, j * 3 + k]),
                             (cp[0, j * 3 + k + 3], cp[1, j * 3 + k + 3]),
                             (0, 0, 255), 2, cv2.LINE_AA)

        if i % group_size == 1:
            cp_norm = torch.Tensor(
                [-1, -1, -1, 0, 0, 0, 1, 1, 1, -1, 0, 1, -1, 0, 1, -1, 0,
                 1]).cuda().view(1, 2, -1)
            cp = PointsToPixelCoords(P=cp_norm, im_size=im_size)
            cp = cp.squeeze().cpu().numpy() + 50
            for j in range(9):
                cv2.drawMarker(watch_images[i], (cp[0, j], cp[1, j]),
                               (0, 0, 255), cv2.MARKER_TILTED_CROSS, 12, 2,
                               cv2.LINE_AA)

            for j in range(1):
                for k in range(3):
                    # vertical grid
                    cv2.line(watch_images[i],
                             (cp[0, j + k * 3], cp[1, j + k * 3]),
                             (cp[0, j + k * 3 + 1], cp[1, j + k * 3 + 1]),
                             (0, 0, 255), 2, cv2.LINE_AA)
                    # horizontal grid
                    cv2.line(watch_images[i],
                             (cp[0, j * 3 + k], cp[1, j * 3 + k]),
                             (cp[0, j * 3 + k + 3], cp[1, j * 3 + k + 3]),
                             (0, 0, 255), 2, cv2.LINE_AA)

        if i % group_size == 2:
            cp_norm = theta_2['tps'][int(i / group_size)][:18].view(1, 2, -1)
            cp = PointsToPixelCoords(P=cp_norm, im_size=im_size)
            cp = cp.squeeze().cpu().numpy() + 50
            for j in range(9):
                cv2.drawMarker(watch_images[i], (cp[0, j], cp[1, j]),
                               (0, 0, 255), cv2.MARKER_TILTED_CROSS, 12, 2,
                               cv2.LINE_AA)

            for j in range(2):
                for k in range(3):
                    # vertical grid
                    cv2.line(watch_images[i],
                             (cp[0, j + k * 3], cp[1, j + k * 3]),
                             (cp[0, j + k * 3 + 1], cp[1, j + k * 3 + 1]),
                             (0, 0, 255), 2, cv2.LINE_AA)
                    # horizontal grid
                    cv2.line(watch_images[i],
                             (cp[0, j * 3 + k], cp[1, j * 3 + k]),
                             (cp[0, j * 3 + k + 3], cp[1, j * 3 + k + 3]),
                             (0, 0, 255), 2, cv2.LINE_AA)

        if i % group_size == 3:
            cp_norm = theta_2['tps'][int(i / group_size)][18:].view(1, 2, -1)
            cp = PointsToPixelCoords(P=cp_norm, im_size=im_size)
            cp = cp.squeeze().cpu().numpy() + 50
            for j in range(9):
                cv2.drawMarker(watch_images[i], (cp[0, j], cp[1, j]),
                               (0, 0, 255), cv2.MARKER_TILTED_CROSS, 12, 2,
                               cv2.LINE_AA)

            for j in range(2):
                for k in range(3):
                    # vertical grid
                    cv2.line(watch_images[i],
                             (cp[0, j + k * 3], cp[1, j + k * 3]),
                             (cp[0, j + k * 3 + 1], cp[1, j + k * 3 + 1]),
                             (0, 0, 255), 2, cv2.LINE_AA)
                    # horizontal grid
                    cv2.line(watch_images[i],
                             (cp[0, j * 3 + k], cp[1, j * 3 + k]),
                             (cp[0, j * 3 + k + 3], cp[1, j * 3 + k + 3]),
                             (0, 0, 255), 2, cv2.LINE_AA)

    watch_images = torch.Tensor(watch_images.astype(np.float32))
    watch_images = watch_images.permute(0, 3, 1, 2)
    vis.image(torchvision.utils.make_grid(watch_images, nrow=5, padding=5),
              opts=opts)
Пример #6
0
def vis_fn_dual(vis, train_loss, val_pck, train_lr, epoch, num_epochs, dataloader, theta, thetai, results, title, use_cuda=True):
    # Visualize watch images
    affTnf = GeometricTnf(geometric_model='affine', use_cuda=use_cuda)
    tpsTnf = GeometricTnf(geometric_model='tps', use_cuda=use_cuda)
    pt = PointTnf(use_cuda=use_cuda)

    group_size = 4
    watch_images = torch.ones(len(dataloader) * group_size, 3, 280, 240)
    watch_keypoints = -torch.ones(len(dataloader) * group_size, 2, 20)
    if use_cuda:
        watch_images = watch_images.cuda()
        watch_keypoints = watch_keypoints.cuda()
    num_points = np.ones(len(dataloader) * group_size).astype(np.int8)
    correct_index = list()
    image_names = list()
    metrics = list()

    # Colors for keypoints
    cmap = plt.get_cmap('tab20')
    colors = list()
    for c in range(20):
        r = cmap(c)[0] * 255
        g = cmap(c)[1] * 255
        b = cmap(c)[2] * 255
        colors.append((b, g, r))
    fnt = cv2.FONT_HERSHEY_COMPLEX

    theta, thetai = swap(theta, thetai)
    # means for normalize of caffe resnet and vgg
    # pixel_means = torch.Tensor(np.array([[[[102.9801, 115.9465, 122.7717]]]]).astype(np.float32))
    for batch_idx, batch in enumerate(dataloader):
        if use_cuda:
            batch = batch_cuda(batch)

        batch['source_image'], batch['target_image'] = swap(batch['source_image'], batch['target_image'])
        batch['source_im_info'], batch['target_im_info'] = swap(batch['source_im_info'], batch['target_im_info'])
        batch['source_points'], batch['target_points'] = swap(batch['source_points'], batch['target_points'])

        # Theta and thetai
        theta_aff = theta['aff'][batch_idx].unsqueeze(0)
        theta_aff_tps = theta['afftps'][batch_idx].unsqueeze(0)

        theta_aff_inver = thetai['aff'][batch_idx].unsqueeze(0)
        theta_aff_tps_inver = thetai['afftps'][batch_idx].unsqueeze(0)

        # Warped image
        warped_aff = affTnf(batch['source_image'], theta_aff)
        warped_aff_tps = tpsTnf(warped_aff, theta_aff_tps)

        watch_images[batch_idx * group_size, :, 0:240, :] = batch['source_image']
        watch_images[batch_idx * group_size + 1, :, 0:240, :] = warped_aff
        watch_images[batch_idx * group_size + 2, :, 0:240, :] = warped_aff_tps
        watch_images[batch_idx * group_size + 3, :, 0:240, :] = batch['target_image']

        # Warped keypoints
        source_im_size = batch['source_im_info'][:, 0:3]
        target_im_size = batch['target_im_info'][:, 0:3]

        source_points = batch['source_points']
        target_points = batch['target_points']

        source_points_norm = PointsToUnitCoords(P=source_points, im_size=source_im_size)
        target_points_norm = PointsToUnitCoords(P=target_points, im_size=target_im_size)

        warped_points_aff_norm = pt.affPointTnf(theta=theta_aff_inver, points=source_points_norm)
        warped_points_aff = PointsToPixelCoords(P=warped_points_aff_norm, im_size=target_im_size)
        _, index_aff, N_pts = pck(target_points, warped_points_aff)
        warped_points_aff = relocate(warped_points_aff, target_im_size)

        warped_points_aff_tps_norm = pt.tpsPointTnf(theta=theta_aff_tps_inver, points=source_points_norm)
        warped_points_aff_tps_norm = pt.affPointTnf(theta=theta_aff_inver, points=warped_points_aff_tps_norm)
        warped_points_aff_tps = PointsToPixelCoords(P=warped_points_aff_tps_norm, im_size=target_im_size)
        _, index_aff_tps, _ = pck(target_points, warped_points_aff_tps)
        warped_points_aff_tps = relocate(warped_points_aff_tps, target_im_size)

        watch_keypoints[batch_idx * group_size, :, :N_pts] = relocate(batch['source_points'], source_im_size)[:, :, :N_pts]
        watch_keypoints[batch_idx * group_size + 1, :, :N_pts] = warped_points_aff[:, :, :N_pts]
        watch_keypoints[batch_idx * group_size + 2, :, :N_pts] = warped_points_aff_tps[:, :, :N_pts]
        watch_keypoints[batch_idx * group_size + 3, :, :N_pts] = relocate(batch['target_points'], target_im_size)[:, :, :N_pts]

        num_points[batch_idx * group_size:batch_idx * group_size + group_size] = N_pts

        correct_index.append(np.arange(N_pts))
        correct_index.append(index_aff)
        correct_index.append(index_aff_tps)
        correct_index.append(np.arange(N_pts))

        image_names.append('Source')
        image_names.append('Aff')
        image_names.append('AffTPS')
        image_names.append('Target')


        metrics.append('')
        metrics.append('PCK: {:.2%}'.format(float(results['aff']['pck'][batch_idx])))
        metrics.append('PCK: {:.2%}'.format(float(results['afftps']['pck'][batch_idx])))
        metrics.append('')


    opts = dict(jpgquality=100, title='Epoch ' + str(epoch) + ' source warped target')
    # Un-normalize for caffe resnet and vgg
    # watch_images = watch_images.permute(0, 2, 3, 1) + pixel_means
    # watch_images = watch_images[:, :, :, [2, 1, 0]].permute(0, 3, 1, 2)
    # watch_images = normalize_image(watch_images, forward=False) * 255.0
    watch_images[:, :, 0:240, :] = normalize_image(watch_images[:, :, 0:240, :], forward=False)
    watch_images *= 255.0
    watch_images = watch_images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
    watch_keypoints = watch_keypoints.cpu().numpy()

    for i in range(watch_images.shape[0]):
        pos_name = (80, 255)
        if (i + 1) % group_size == 1 or (i + 1) % group_size == 0:
            pos_pck = (0, 0)
        else:
            pos_pck = (70, 275)
        cv2.putText(watch_images[i], image_names[i], pos_name, fnt, 0.5, (0, 0, 0), 1)
        cv2.putText(watch_images[i], metrics[i], pos_pck, fnt, 0.5, (0, 0, 0), 1)
        if (i + 1) % group_size == 0:
            for j in range(num_points[i]):
                cv2.drawMarker(watch_images[i], (watch_keypoints[i, 0, j], watch_keypoints[i, 1, j]), colors[j],
                               cv2.MARKER_CROSS, 12, 2, cv2.LINE_AA)
        else:
            for j in correct_index[i]:
                cv2.drawMarker(watch_images[i], (watch_keypoints[i, 0, j], watch_keypoints[i, 1, j]), colors[j],
                               cv2.MARKER_DIAMOND, 12, 2, cv2.LINE_AA)
                cv2.drawMarker(watch_images[i],
                               (watch_keypoints[i + (group_size - 1) - (i % group_size), 0, j], watch_keypoints[i + (group_size - 1) - (i % group_size), 1, j]),
                               colors[j], cv2.MARKER_CROSS, 12, 2, cv2.LINE_AA)

    watch_images = torch.Tensor(watch_images.astype(np.float32))
    watch_images = watch_images.permute(0, 3, 1, 2)
    vis.image(torchvision.utils.make_grid(watch_images, nrow=4, padding=3), opts=opts)

    if epoch == num_epochs:
        epochs = np.arange(1, num_epochs+1)
        # Visualize train loss
        opts_loss = dict(xlabel='Epoch',
                    ylabel='Loss',
                    title='GM ResNet101 ' + title + ' Training Loss',
                    legend=['Loss'],
                    width=2000)
        vis.line(train_loss, epochs, opts=opts_loss)

        # Visualize val pck
        opts_pck = dict(xlabel='Epoch',
                    ylabel='Val PCK',
                    title='GM ResNet101 ' + title + ' Val PCK',
                    legend=['PCK'],
                    width=2000)
        vis.line(val_pck, epochs, opts=opts_pck)

        # Visualize train lr
        opts_lr = dict(xlabel='Epoch',
                       ylabel='Learning Rate',
                       title='GM ResNet101 ' + title + ' Training Learning Rate',
                       legend=['LR'],
                       width=2000)
        vis.line(train_lr, epochs, opts=opts_lr)
Пример #7
0
def pck_metric(batch,
               batch_start_idx,
               theta_aff,
               theta_tps,
               theta_aff_tps,
               stats,
               args,
               use_cuda=True):
    alpha = args.pck_alpha
    do_aff = theta_aff is not None
    do_tps = theta_tps is not None
    do_aff_tps = theta_aff_tps is not None

    source_im_size = batch['source_im_size']
    target_im_size = batch['target_im_size']

    source_points = batch['source_points']
    target_points = batch['target_points']

    # Instantiate point transformer
    # pt = PointTnf(use_cuda=use_cuda, tps_reg_factor=args.tps_reg_factor)
    pt = PointTnf(use_cuda=use_cuda)

    # warp points with estimated transformations
    target_points_norm = PointsToUnitCoords(target_points, target_im_size)

    if do_aff:
        # do affine only
        warped_points_aff_norm = pt.affPointTnf(theta_aff, target_points_norm)
        warped_points_aff = PointsToPixelCoords(warped_points_aff_norm,
                                                source_im_size)

    if do_tps:
        # do tps only
        warped_points_tps_norm = pt.tpsPointTnf(theta_tps, target_points_norm)
        warped_points_tps = PointsToPixelCoords(warped_points_tps_norm,
                                                source_im_size)

    if do_aff_tps:
        # do tps+affine
        warped_points_aff_tps_norm = pt.tpsPointTnf(theta_aff_tps,
                                                    target_points_norm)
        warped_points_aff_tps_norm = pt.affPointTnf(
            theta_aff, warped_points_aff_tps_norm)
        warped_points_aff_tps = PointsToPixelCoords(warped_points_aff_tps_norm,
                                                    source_im_size)

    L_pck = batch['L_pck'].data

    current_batch_size = batch['source_im_size'].size(0)
    indices = range(batch_start_idx, batch_start_idx + current_batch_size)

    # import pdb; pdb.set_trace()

    if do_aff:
        pck_aff = pck(source_points.data, warped_points_aff.data, L_pck, alpha)

    if do_tps:
        pck_tps = pck(source_points.data, warped_points_tps.data, L_pck, alpha)

    if do_aff_tps:
        pck_aff_tps = pck(source_points.data, warped_points_aff_tps.data,
                          L_pck, alpha)

    if do_aff:
        stats['aff']['pck'][indices] = pck_aff.unsqueeze(1).cpu().numpy()
    if do_tps:
        stats['tps']['pck'][indices] = pck_tps.unsqueeze(1).cpu().numpy()
    if do_aff_tps:
        stats['aff_tps']['pck'][indices] = pck_aff_tps.unsqueeze(
            1).cpu().numpy()

    return stats