Пример #1
0
    def testSubtraction(self):
        actual = self.vectorQ1 - self.vectorQ2
        expected = geometry.Vector3D(0, 6, 0)
        self.assertEqual(actual, expected)

        actual = self.vectorQ1 - 3
        expected = geometry.Vector3D(-1, 0, 1)
        self.assertEqual(actual, expected)
Пример #2
0
    def testAddition(self):
        actual = self.vectorQ1 + self.vectorQ2
        expected = geometry.Vector3D(4, 0, 8)
        self.assertEqual(actual, expected)

        actual = self.vectorQ1 + 3
        expected = geometry.Vector3D(5, 6, 7)
        self.assertEqual(actual, expected)
Пример #3
0
 def tearDown(self):
     self.assertTrue(self.vectorQ1 == geometry.Vector3D(2, 3, 4))
     self.assertTrue(self.vectorQ2 == geometry.Vector3D(2, -3, 4))
     self.assertTrue(self.vectorQ3 == geometry.Vector3D(-2, -1, -1))
     self.assertTrue(self.vectorQ4 == geometry.Vector3D(-4, 6, -8))
     self.assertTrue(self.vectorQ1 == [2, 3, 4])
     self.assertTrue(self.vectorQ2 == [2, -3, 4])
     self.assertTrue(self.vectorQ3 == [-2, -1, -1])
     self.assertTrue(self.vectorQ4 == [-4, 6, -8])
Пример #4
0
    def testSubtractionToSelf(self):
        actual = geometry.Vector3D.zero()
        actual -= self.vectorQ1
        expected = geometry.Vector3D(-2, -3, -4)
        self.assertEqual(actual, expected)

        actual = geometry.Vector3D(2, 3, 4)
        actual -= 3
        expected = geometry.Vector3D(-1, 0, 1)
        self.assertEqual(actual, expected)
Пример #5
0
    def testAdditionToSelf(self):
        actual = geometry.Vector3D.zero()
        actual += self.vectorQ1
        expected = geometry.Vector3D(2, 3, 4)
        self.assertEqual(actual, expected)

        actual = geometry.Vector3D(2, 3, 4)
        actual += 3
        expected = geometry.Vector3D(5, 6, 7)
        self.assertEqual(actual, expected)
Пример #6
0
 def setUp(self):
     # Vectors in each quadrant
     # Q1 is top right: x>0, y>0, and goes counter clockwise
     self.vectorQ1 = geometry.Vector3D(2, 3, 4)
     self.vectorQ2 = geometry.Vector3D(2, -3, 4)
     self.vectorQ3 = geometry.Vector3D(-2, -1, -1)
     self.vectorQ4 = geometry.Vector3D(-4, 6, -8)
     self.vectors = [
         self.vectorQ1, self.vectorQ2, self.vectorQ3, self.vectorQ4
     ]
Пример #7
0
    def testScalarMultiplication(self):
        actual = self.vectorQ1 * 2
        expected = geometry.Vector3D(4, 6, 8)
        self.assertEqual(actual, expected)

        actual = 2 * self.vectorQ1
        self.assertEqual(actual, expected)
Пример #8
0
    def __init__(self, parent=None):
        super().__init__(parent)

        self.stars3d = parser.parse_stars3d("stars/")
        self.view_area = geometry.ViewArea(geometry.Vector3D(0, 0, 1),
                                           geometry.Vector3D(0, 1, 0),
                                           math.pi / 5)
        self.stars2d = None
        self.update_stars2d()

        self.constellations_list = list(
            set([star.constellation for star in self.stars3d]))
        self.constellations_centers, self.constellations_radii = \
            geometry.calculate_constellations_properties(self.stars3d)

        self.mouse_press_coordinates = None
        self.selected_constellation = None

        layout = QtWidgets.QVBoxLayout(self)
        layout.setAlignment(QtCore.Qt.AlignTop)

        self.search_button = QtWidgets.QPushButton("Search", self)
        self.search_button.clicked.connect(self.show_search)
        layout.addWidget(self.search_button)
        self.search_text = ""

        self.help_button = QtWidgets.QPushButton("Help", self)
        self.help_button.clicked.connect(self.show_help)
        layout.addWidget(self.help_button)

        self.about_button = QtWidgets.QPushButton("About", self)
        self.about_button.clicked.connect(self.show_about)
        layout.addWidget(self.about_button)

        self.exit_button = QtWidgets.QPushButton("Exit", self)
        self.exit_button.clicked.connect(self.close)
        layout.addWidget(self.exit_button)

        self.info_popup = None

        self.setWindowState(QtCore.Qt.WindowMaximized)
        self.setWindowTitle("Sky full of stars")
        self.background = QtGui.QImage("bg.png")
Пример #9
0
    def testCrossProduct(self):
        actual = geometry.Vector3D(1, 0, 0).cross(geometry.Vector3D(0, 1, 0))
        expected = geometry.Vector3D(0, 0, 1)
        self.assertEqual(actual, expected)

        actual = geometry.Vector3D(0, 1, 0).cross(geometry.Vector3D(1, 0, 0))
        expected = geometry.Vector3D(0, 0, -1)
        self.assertEqual(actual, expected)

        actual = self.vectorQ1.cross(self.vectorQ2)
        expected = geometry.Vector3D(24, 0, -12)
        self.assertEqual(actual, expected)
Пример #10
0
 def testScalarDivision(self):
     actual = self.vectorQ1 / 2
     expected = geometry.Vector3D(1, 1.5, 2)
     self.assertEqual(actual, expected)
Пример #11
0
    def makeTracks(self):
        """Generate tracks based on the specified number of azimuthal
        angle, subdivisions, and track spacing.
        """

        # Geometry preliminaries
        w = self.geometry.width  # Width of 3D domain
        h = self.geometry.height  # Height of 3D domain
        d = self.geometry.depth  # Depth of 3D domain
        if self.boundary == 'reflective':  # Azimuthal angle subdivision, e.g. div=2 is (0,pi)
            self.div = 2
        elif self.boundary == 'periodic' or self.boundary == 'white':
            self.div = 4
        nangle = self.nangle // self.div  # Num of azimuthal angles followed
        self.npolar = 3

        #Determine azimuthal angles
        intv = vectorize(int)
        p = 2 * pi / self.nangle * (0.5 + arange(nangle))  # Desired angles
        t = pi / 2.0 / self.npolar * (0.5 + arange(self.npolar)
                                      )  # Desired polar angles
        self.nx = intv(abs(w / self.delta * sin(p)) +
                       1)  # Num of intersections along x-axis
        self.ny = intv(abs(h / self.delta * cos(p)) +
                       1)  # Num of intersections along y-axis
        self.nz = intv(abs(d / self.delta * sin(t)) +
                       1)  # Num of intersections along z-axis
        self.nt = self.nx + self.ny  # Total num of tracks for each angle
        self.phi = arctan(h * self.nx / (w * self.ny))  # Actual angle

        # create polar angle spacing and correct angles for each azi angle
        self.theta = zeros((len(self.nx), len(self.nz)))
        for x in range(len(self.nx)):
            for z, nz in enumerate(self.nz):
                self.theta[x][z] = pi / 2.0 - arctan(
                    d / (nz * sqrt((w / self.nx[x] / 2.0)**2 +
                                   (h / self.ny[x] / 2.0)**2)))

        print("nz = {0}".format(self.nz))
        print("theta = {0}".format(self.theta))

        for i, angle in enumerate(self.phi):
            if p[i] > pi / 2:
                self.phi[i] = pi - self.phi[i]  # Fix angles in (pi/2, pi)

        # Determine track spacing
        xprime = w / self.nx  # Spacing between points along x-axis
        yprime = h / self.ny  # Spacing between points along y-axis
        zprime = d / self.nz  # Spacing between points along y-axis
        self.dels = xprime * sin(self.phi)  # Actual track spacing

        # Determine azimuthal weights
        temp1 = concatenate((self.phi, [2 * pi / self.div] + self.phi[0]))
        temp2 = concatenate((-self.phi[0:1], self.phi))
        x1 = 0.5 * (temp1[1:] - temp1[:-1])
        x2 = 0.5 * (temp2[1:] - temp2[:-1])
        self.wgta = (x1 + x2) / (2 * pi) * self.dels * self.div

        print('phi: {0}'.format(self.phi))

        # allocate track lists
        self.tracks = []
        for p in range(2 * self.npolar):
            self.tracks.append([])
            for i in range(nangle):
                self.tracks[p].append([])

        # Make tracks on (0,y,z), (x,0,z), and (w,y,z) planes
        for i in range(nangle):
            xin = zeros(self.nt[i])
            yin = zeros(self.nt[i])

            phi = self.phi[i]
            xin[:self.nx[i]] = xprime[i] * (0.5 + arange(self.nx[i]))
            yin[:self.nx[i]] = 0
            yin[self.nx[i]:] = yprime[i] * (0.5 + arange(self.ny[i]))
            if sin(phi) > 0 and cos(phi) > 0:
                xin[self.nx[i]:] = 0
            elif sin(phi) > 0 and cos(phi) < 0:
                xin[self.nx[i]:] = w
            phi = self.phi[i]

            for x, y in zip(xin, yin):
                for p in range(len(self.nz)):
                    zin = zprime[p] * (0.5 + arange(self.nz[p]))
                    print('zin: {0}'.format(zin))
                    for z in zin:
                        # track for theta > pi / 2
                        r_in = geom.Vector3D(x, y, z)
                        r_out = self.geometry.endpoint3d(
                            r_in, phi, self.theta[i][p])
                        newTrack = Track3D(r_in, r_out, phi, self.theta[i][p])
                        newTrack.weight = self.wgta[
                            i]  # Could make index on track to get rid of this
                        self.tracks[p][i].append(newTrack)

                        # track for reflecting theta
                        r_in = geom.Vector3D(x, y, z)
                        r_out = self.geometry.endpoint3d(
                            r_in, phi, pi - self.theta[i][p])
                        newTrack = Track3D(r_in, r_out, phi,
                                           pi - self.theta[i][p])
                        newTrack.weight = self.wgta[
                            i]  # Could make index on track to get rid of this
                        self.tracks[p][i].append(newTrack)

        # make tracks on (x, y, 0) plane
        for p in range(len(self.nz)):
            for i in range(nangle):
                dx = xprime[i]
                dy = yprime[i]
                dl = zprime[p] * tan(self.theta[i][p])
                xin = zeros(self.nt[i])
                yin = zeros(self.nt[i])

                phi = self.phi[i]
                xin[:self.nx[i]] = xprime[i] * (0.5 + arange(self.nx[i]))
                yin[:self.nx[i]] = 0
                yin[self.nx[i]:] = yprime[i] * (0.5 + arange(self.ny[i]))
                if sin(phi) > 0 and cos(phi) > 0:
                    xin[self.nx[i]:] = 0
                elif sin(phi) > 0 and cos(phi) < 0:
                    xin[self.nx[i]:] = w
                phi = self.phi[i]

                # tracks for theta < pi / 2
                for x, y in zip(xin, yin):
                    x += cos(phi) * dl / 2.0
                    y += sin(phi) * dl / 2.0

                    while x < w and y < h and x > 0 and y > 0:
                        r_in = geom.Vector3D(x, y, 0)
                        r_out = self.geometry.endpoint3d(
                            r_in, phi, self.theta[i][p])
                        newTrack = Track3D(r_in, r_out, phi, self.theta[i][p])
                        newTrack.weight = self.wgta[
                            i]  # Could make index on track to get rid of this
                        self.tracks[p][i].append(newTrack)
                        x += cos(phi) * dl
                        y += sin(phi) * dl

                # tracks for reflecting theta
                for x, y in zip(xin, yin):
                    x += cos(phi) * dl / 2.0
                    y += sin(phi) * dl / 2.0

                    while x < w and y < h and x > 0 and y > 0:
                        r_in = geom.Vector3D(x, y, d)
                        r_out = self.geometry.endpoint3d(
                            r_in, phi, pi - self.theta[i][p])
                        newTrack = Track3D(r_in, r_out, phi,
                                           pi - self.theta[i][p])
                        newTrack.weight = self.wgta[
                            i]  # Could make index on track to get rid of this
                        self.tracks[p][i].append(newTrack)
                        x += cos(phi) * dl
                        y += sin(phi) * dl