def regularize(self, point): """ In 3D, regularize the norm of the rotation vector, to be between 0 and pi, following the axis-angle representation's convention. If the angle angle is between pi and 2pi, the function computes its complementary in 2pi and inverts the direction of the rotation axis. """ point = gs.to_ndarray(point, to_ndim=2) assert self.belongs(point) n_points, vec_dim = point.shape if vec_dim == 3: angle = gs.linalg.norm(point, axis=1) regularized_point = point.astype('float64') mask_not_0 = angle != 0 k = gs.floor(angle / (2 * gs.pi) + .5) norms_ratio = gs.zeros_like(angle).astype('float64') norms_ratio[mask_not_0] = ( 1. - 2. * gs.pi * k[mask_not_0] / angle[mask_not_0]) norms_ratio[angle == 0] = 1 for i in range(n_points): regularized_point[i, :] = norms_ratio[i] * point[i] else: # TODO(nina): regularization needed in nD? regularized_point = point assert regularized_point.ndim == 2 return regularized_point
def regularize(self, rot_vec): """ In 3D, regularize the norm of the rotation vector, to be between 0 and pi, following the axis-angle representation's convention. If the angle angle is between pi and 2pi, the function computes its complementary in 2pi and inverts the direction of the rotation axis. :param rot_vec: 3d vector :returns self.regularized_rot_vec: 3d vector with: 0 < norm < pi """ rot_vec = gs.to_ndarray(rot_vec, to_ndim=2) assert self.belongs(rot_vec) n_rot_vecs, vec_dim = rot_vec.shape if vec_dim == 3: angle = gs.linalg.norm(rot_vec, axis=1) regularized_rot_vec = rot_vec.astype('float64') mask_not_0 = angle != 0 k = gs.floor(angle / (2 * gs.pi) + .5) norms_ratio = gs.zeros_like(angle).astype('float64') norms_ratio[mask_not_0] = ( 1. - 2. * gs.pi * k[mask_not_0] / angle[mask_not_0]) norms_ratio[angle == 0] = 1 for i in range(n_rot_vecs): regularized_rot_vec[i, :] = norms_ratio[i] * rot_vec[i] else: # TODO(nina): regularization needed in nD? regularized_rot_vec = rot_vec assert regularized_rot_vec.ndim == 2 return regularized_rot_vec
def regularize(self, point): """Regularize a point to be in accordance with convention. In 3D, regularize the norm of the rotation vector, to be between 0 and pi, following the axis-angle representation's convention. If the angle angle is between pi and 2pi, the function computes its complementary in 2pi and inverts the direction of the rotation axis. Parameters ---------- point : array-like, shape=[...,3] Returns ------- regularized_point : array-like, shape=[..., 3] """ regularized_point = point angle = gs.linalg.norm(regularized_point, axis=-1) mask_0 = gs.isclose(angle, 0.) mask_not_0 = ~mask_0 mask_pi = gs.isclose(angle, gs.pi) # This avoids division by 0. mask_0_float = gs.cast(mask_0, gs.float32) + self.epsilon mask_not_0_float = ( gs.cast(mask_not_0, gs.float32) + self.epsilon) mask_pi_float = gs.cast(mask_pi, gs.float32) + self.epsilon k = gs.floor(angle / (2 * gs.pi) + .5) angle += mask_0_float norms_ratio = gs.zeros_like(angle) norms_ratio += mask_not_0_float * ( 1. - 2. * gs.pi * k / angle) norms_ratio += mask_0_float norms_ratio += mask_pi_float * ( gs.pi / angle - (1. - 2. * gs.pi * k / angle)) regularized_point = gs.einsum( '...,...i->...i', norms_ratio, regularized_point) return regularized_point
def regularize(self, point, point_type=None): """ In 3D, regularize the norm of the rotation vector, to be between 0 and pi, following the axis-angle representation's convention. If the angle angle is between pi and 2pi, the function computes its complementary in 2pi and inverts the direction of the rotation axis. """ if point_type is None: point_type = self.default_point_type if point_type == 'vector': point = gs.to_ndarray(point, to_ndim=2) assert self.belongs(point, point_type) n_points, _ = point.shape regularized_point = gs.copy(point) if self.n == 3: angle = gs.linalg.norm(regularized_point, axis=1) mask_0 = gs.isclose(angle, 0) mask_not_0 = ~mask_0 mask_pi = gs.isclose(angle, gs.pi) k = gs.floor(angle / (2 * gs.pi) + .5) norms_ratio = gs.zeros_like(angle) norms_ratio[mask_not_0] = ( 1. - 2. * gs.pi * k[mask_not_0] / angle[mask_not_0]) norms_ratio[mask_0] = 1 norms_ratio[mask_pi] = gs.pi / angle[mask_pi] for i in range(n_points): regularized_point[i, :] = (norms_ratio[i] * regularized_point[i, :]) else: # TODO(nina): regularization needed in nD? regularized_point = gs.copy(point) assert gs.ndim(regularized_point) == 2 elif point_type == 'matrix': point = gs.to_ndarray(point, to_ndim=3) # TODO(nina): regularization for matrices? regularized_point = gs.copy(point) return regularized_point
def online_kmeans(X, metric, n_clusters, n_repetitions=20, atol=1e-5, max_iter=5e4): """Perform online K-means clustering. Perform online version of k-means algorithm on data contained in X. The data points are treated sequentially and the cluster centers are updated one at a time. This version of k-means avoids computing the mean of each cluster at each iteration and is therefore less computationally intensive than the offline version. In the setting of quantization of probability distributions, this algorithm is also known as Competitive Learning Riemannian Quantization. It computes the closest approximation of the empirical distribution of data by a discrete distribution supported by a smaller number of points with respect to the Wasserstein distance. This smaller number of points is n_clusters. Parameters ---------- X : array-like, shape=[..., n_features] Input data. It is treated sequentially by the algorithm, i.e. one datum is chosen randomly at each iteration. metric : object Metric of the space in which the data lives. At each iteration, one of the cluster centers is moved in the direction of the new datum, according the exponential map of the underlying space, which is a method of metric. n_clusters : int Number of clusters of the k-means clustering, or number of desired atoms of the quantized distribution. n_repetitions : int, default=20 The cluster centers are updated using decreasing step sizes, each of which stays constant for n_repetitions iterations to allow a better exploration of the data points. max_iter : int, default=5e4 Maximum number of iterations. If it is reached, the quantization may be inacurate. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. """ n_samples = X.shape[0] random_indices = gs.random.randint(low=0, high=n_samples, size=(n_clusters, )) cluster_centers = gs.get_slice(X, gs.cast(random_indices, gs.int32)) gap = 1.0 iteration = 0 while iteration < max_iter: iteration += 1 step_size = gs.floor(gs.array(iteration / n_repetitions)) + 1 random_index = gs.random.randint(low=0, high=n_samples, size=(1, )) point = gs.get_slice(X, gs.cast(random_index, gs.int32)) index_to_update = metric.closest_neighbor_index(point, cluster_centers) center_to_update = gs.copy( gs.get_slice(cluster_centers, index_to_update)) tangent_vec_update = metric.log( point=point, base_point=center_to_update) / (step_size + 1) new_center = metric.exp(tangent_vec=tangent_vec_update, base_point=center_to_update) gap = metric.dist(center_to_update, new_center) if gap == 0 and iteration == 1: gap = gs.array(1.0) cluster_centers[index_to_update, :] = new_center if gs.isclose(gap, 0, atol=atol): break if iteration == max_iter - 1: logging.warning("Maximum number of iterations {} reached. The" "clustering may be inaccurate".format(max_iter)) labels = gs.zeros(n_samples) for i in range(n_samples): labels[i] = int(metric.closest_neighbor_index(X[i], cluster_centers)) return cluster_centers, labels
def optimal_quantization(self, points, n_centers=N_CENTERS, n_repetitions=N_REPETITIONS, tolerance=TOLERANCE, n_max_iterations=N_MAX_ITERATIONS): """ Compute the optimal approximation of points by a smaller number of weighted centers using the Competitive Learning Riemannian Quantization algorithm. The centers are updated using decreasing step sizes, each of which stays constant for n_repetitions iterations to allow a better exploration of the data points. See https://arxiv.org/abs/1806.07605. Return : - n_centers centers - n_centers weights between 0 and 1 - a dictionary containing the clusters, where each key is the cluster index, and its value is the lists of points belonging to the cluster - the number of steps needed to converge. """ n_points = points.shape[0] dimension = points.shape[-1] random_indices = gs.random.randint(low=0, high=n_points, size=(n_centers, )) centers = points[gs.ix_(random_indices, gs.arange(dimension))] gap = 1.0 iteration = 0 while iteration < n_max_iterations: iteration += 1 step_size = gs.floor(iteration / n_repetitions) + 1 random_index = gs.random.randint(low=0, high=n_points, size=(1, )) point = points[gs.ix_(random_index, gs.arange(dimension))] index_to_update = self.closest_neighbor_index(point, centers) center_to_update = centers[index_to_update, :] tangent_vec_update = self.log( point=point, base_point=center_to_update) / (step_size + 1) new_center = self.exp(tangent_vec=tangent_vec_update, base_point=center_to_update) gap = self.dist(center_to_update, new_center) gap = (gap != 0) * gap + (gap == 0) centers[index_to_update, :] = new_center if gs.isclose(gap, 0, atol=tolerance): break if iteration == n_max_iterations - 1: print('Maximum number of iterations {} reached. The' 'quantization may be inaccurate'.format(n_max_iterations)) clusters = dict() weights = gs.zeros((n_centers, )) index_list = list() for point in points: index = self.closest_neighbor_index(point, centers) if index not in index_list: clusters[index] = list() index_list.append(index) clusters[index].append(point) weights[index] += 1 weights = weights / n_points return centers, weights, clusters, iteration