Пример #1
0
    def random_von_mises_fisher(self, kappa=10, n_samples=1):
        """Sample in the 2-sphere with the von Mises distribution.

        Sample in the 2-sphere with the von Mises distribution centered in the
        north pole.

        Parameters
        ----------
        kappa : int, optional
        n_samples : int, optional

        Returns
        -------
        point : array-like
        """
        if self.dimension != 2:
            raise NotImplementedError(
                'Sampling from the von Mises Fisher distribution'
                'is only implemented in dimension 2.')
        angle = 2. * gs.pi * gs.random.rand(n_samples)
        angle = gs.to_ndarray(angle, to_ndim=2, axis=1)
        unit_vector = gs.hstack((gs.cos(angle), gs.sin(angle)))
        scalar = gs.random.rand(n_samples)

        coord_z = 1. + 1. / kappa * gs.log(scalar + (1. - scalar) *
                                           gs.exp(gs.array(-2. * kappa)))
        coord_z = gs.to_ndarray(coord_z, to_ndim=2, axis=1)

        coord_xy = gs.sqrt(1. - coord_z**2) * unit_vector

        point = gs.hstack((coord_xy, coord_z))

        return point
Пример #2
0
def grad(y_pred,
         y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """
    Closed-form for the gradient of pose_loss.

    :return: tangent vector at point y_pred.
    """
    if gs.ndim(y_pred) == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if gs.ndim(y_true) == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        grad = lie_group.grad(y_pred, y_true, SE3, metric)

    if representation == 'quaternion':

        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred_pose = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true_pose = gs.hstack([y_true_rot_vec, y_true[:, 4:]])
        grad = lie_group.grad(y_pred_pose, y_true_pose, SE3, metric)

        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:4]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm**2 + quat_scalar**2

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = -2 * quat_vec / (quat_sq_norm)
        differential_vec = (
            2 *
            (quat_scalar / quat_sq_norm - 2 * quat_arctan2 / quat_vec_norm) *
            (gs.einsum('ni,nj->nij', quat_vec, quat_vec) / quat_vec_norm *
             quat_vec_norm) + 2 * quat_arctan2 / quat_vec_norm * gs.eye(3))

        differential_scalar_t = gs.transpose(differential_scalar, axes=(1, 0))

        upper_left_block = gs.hstack(
            (differential_scalar_t, differential_vec[0]))
        upper_right_block = gs.zeros((3, 3))
        lower_right_block = gs.eye(3)
        lower_left_block = gs.zeros((3, 4))

        top = gs.hstack((upper_left_block, upper_right_block))
        bottom = gs.hstack((lower_left_block, lower_right_block))

        differential = gs.vstack((top, bottom))
        differential = gs.expand_dims(differential, axis=0)

        grad = gs.einsum('ni,nij->ni', grad, differential)

    grad = gs.squeeze(grad, axis=0)
    return grad
Пример #3
0
def grad(y_pred,
         y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """
    Closed-form for the gradient of pose_loss.

    :return: tangent vector at point y_pred.
    """
    if y_pred.ndim == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if y_true.ndim == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'vector':
        grad = lie_group.grad(y_pred, y_true, SE3, metric)

    if representation == 'quaternion':

        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred_pose = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true_pose = gs.hstack([y_true_rot_vec, y_true[:, 4:]])
        grad = lie_group.grad(y_pred_pose, y_true_pose, SE3, metric)

        differential = gs.zeros((1, 6, 7))

        upper_left_block = gs.zeros((1, 3, 4))
        lower_right_block = gs.zeros((1, 3, 3))
        quat_scalar = y_pred[:, :1]
        quat_vec = y_pred[:, 1:4]

        quat_vec_norm = gs.linalg.norm(quat_vec, axis=1)
        quat_sq_norm = quat_vec_norm**2 + quat_scalar**2
        # TODO(nina): check that this sq norm is 1?

        quat_arctan2 = gs.arctan2(quat_vec_norm, quat_scalar)
        differential_scalar = -2 * quat_vec / (quat_sq_norm)
        differential_vec = (
            2 *
            (quat_scalar / quat_sq_norm - 2 * quat_arctan2 / quat_vec_norm) *
            gs.outer(quat_vec, quat_vec) / quat_vec_norm**2 +
            2 * quat_arctan2 / quat_vec_norm * gs.eye(3))

        upper_left_block[0, :, :1] = differential_scalar.transpose()
        upper_left_block[0, :, 1:] = differential_vec
        lower_right_block[0, :, :] = gs.eye(3)

        differential[0, :3, :4] = upper_left_block
        differential[0, 3:, 4:] = lower_right_block

        grad = gs.matmul(grad, differential)

    grad = gs.squeeze(grad, axis=0)
    return grad
Пример #4
0
        def _exp(tangent_vec, base_point):
            circle_center = (base_point[0] +
                             base_point[1] * tangent_vec[1] / tangent_vec[0])
            circle_radius = gs.sqrt((circle_center - base_point[0])**2 +
                                    base_point[1]**2)

            moebius_d = 1
            moebius_c = 1 / (2 * circle_radius)
            moebius_b = circle_center - circle_radius
            moebius_a = (circle_center + circle_radius) * moebius_c

            point_complex = base_point[0] + 1j * base_point[1]
            tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

            point_moebius = (1j * (moebius_d * point_complex - moebius_b) /
                             (moebius_c * point_complex - moebius_a))
            tangent_vec_moebius = (
                -1j * tangent_vec_complex *
                (1j * moebius_c * point_moebius + moebius_d)**2)

            end_point_moebius = point_moebius * gs.exp(
                tangent_vec_moebius / point_moebius)
            end_point_complex = (
                moebius_a * 1j * end_point_moebius +
                moebius_b) / (moebius_c * 1j * end_point_moebius + moebius_d)
            end_point_expected = gs.hstack(
                [np.real(end_point_complex),
                 np.imag(end_point_complex)])
            return end_point_expected
Пример #5
0
    def regularize(self, point, point_type=None):
        """Regularize the point into the manifold's canonical representation.

        Parameters
        ----------
        point : array-like, shape=[n_samples, dim]
                           or shape=[n_samples, dim_2, dim_2]
            Point to be regularized.
        point_type : str, {'vector', 'matrix'}
            Representation of point.

        Returns
        -------
        regularized_point : array-like, shape=[n_samples, dim]
                            or shape=[n_samples, dim_2, dim_2]
            Point in the manifold's canonical representation.
        """
        if point_type is None:
            point_type = self.default_point_type
        assert point_type in ['vector', 'matrix']

        if point_type == 'vector':
            point = gs.to_ndarray(point, to_ndim=2)
            intrinsic = self.metric.is_intrinsic(point)
            regularized_point = self._iterate_over_manifolds(
                'regularize', {'point': point}, intrinsic)
            regularized_point = gs.hstack(regularized_point)
        elif point_type == 'matrix':
            regularized_point = [
                manifold_i.regularize(point[:, i])
                for i, manifold_i in enumerate(self.manifolds)]
            regularized_point = gs.stack(regularized_point, axis=1)
        return regularized_point
Пример #6
0
    def adjoint_map(state):
        r"""Construct the matrix associated to the adjoint representation.

        The inner automorphism is given by :math:`Ad_X : g |-> XgX^-1`. For a
        state :math:`X = (\theta, x, y)`, the matrix associated to its tangent
        map, the adjoint representation, is
        :math:`\begin{bmatrix} 1 & \\ -J [x, y] & R(\theta) \end{bmatrix}`,
        where :math:`R(\theta)` is the rotation matrix of angle theta, and
        :math:`J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}`

        Parameters
        ----------
        state : array-like, shape=[dim]
            Vector representing a state.

        Returns
        -------
        adjoint : array-like, shape=[dim, dim]
            Adjoint representation of the state.
        """
        theta, _, _ = state
        tangent_base = gs.array([[0.0, -1.0], [1.0, 0.0]])
        orientation_part = gs.eye(Localization.dim_rot, Localization.dim)
        pos_column = gs.reshape(state[1:], (Localization.group.n, 1))
        position_wrt_orientation = Matrices.mul(-tangent_base, pos_column)
        position_wrt_position = Localization.rotation_matrix(theta)
        last_lines = gs.hstack(
            (position_wrt_orientation, position_wrt_position))
        ad = gs.vstack((orientation_part, last_lines))

        return ad
    def test_exp_vectorization(self):
        point = gs.array([[1.0, 1.0], [1.0, 1.0]])
        tangent_vec = gs.array([[2.0, 1.0], [2.0, 1.0]])
        result = self.metric.exp(tangent_vec, point)

        point = point[0]
        tangent_vec = tangent_vec[0]
        circle_center = point[0] + point[1] * tangent_vec[1] / tangent_vec[0]
        circle_radius = gs.sqrt((circle_center - point[0])**2 + point[1]**2)

        moebius_d = 1
        moebius_c = 1 / (2 * circle_radius)
        moebius_b = circle_center - circle_radius
        moebius_a = (circle_center + circle_radius) * moebius_c

        point_complex = point[0] + 1j * point[1]
        tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

        point_moebius = (1j * (moebius_d * point_complex - moebius_b) /
                         (moebius_c * point_complex - moebius_a))
        tangent_vec_moebius = (-1j * tangent_vec_complex *
                               (1j * moebius_c * point_moebius + moebius_d)**2)

        end_point_moebius = point_moebius * gs.exp(
            tangent_vec_moebius / point_moebius)
        end_point_complex = (moebius_a * 1j * end_point_moebius +
                             moebius_b) / (moebius_c * 1j * end_point_moebius +
                                           moebius_d)
        end_point_expected = gs.hstack(
            [np.real(end_point_complex),
             np.imag(end_point_complex)])
        expected = gs.stack([end_point_expected, end_point_expected])
        self.assertAllClose(result, expected)
    def test_exp(self):
        point = gs.array([1., 1.])
        tangent_vec = gs.array([2., 1.])
        end_point = self.metric.exp(tangent_vec, point)

        circle_center = point[0] + point[1] * tangent_vec[1] / tangent_vec[0]
        circle_radius = gs.sqrt((circle_center - point[0])**2 + point[1]**2)

        moebius_d = 1
        moebius_c = 1 / (2 * circle_radius)
        moebius_b = circle_center - circle_radius
        moebius_a = (circle_center + circle_radius) * moebius_c

        point_complex = point[0] + 1j * point[1]
        tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

        point_moebius = 1j * (moebius_d * point_complex - moebius_b)\
            / (moebius_c * point_complex - moebius_a)
        tangent_vec_moebius = -1j * tangent_vec_complex * (
            1j * moebius_c * point_moebius + moebius_d)**2

        end_point_moebius = point_moebius * gs.exp(
            tangent_vec_moebius / point_moebius)
        end_point_complex = (moebius_a * 1j * end_point_moebius + moebius_b)\
            / (moebius_c * 1j * end_point_moebius + moebius_d)
        end_point_expected = gs.hstack(
            [np.real(end_point_complex),
             np.imag(end_point_complex)])

        self.assertAllClose(end_point, end_point_expected)
Пример #9
0
 def ivp(state, _):
     """Reformat the initial value problem geodesic ODE."""
     position, velocity = state[: self.dim], state[self.dim :]
     state = gs.stack([position, velocity])
     vel, acc = self.geodesic_equation(state, _)
     eq = (vel, acc)
     return gs.hstack(eq)
Пример #10
0
    def _half_plane_to_extrinsic_coordinates(point):
        """Convert half plane to extrinsic coordinates.

        Convert the parameterization of a point in the hyperbolic plane
        from its upper half plane model coordinates, to the extrinsic
        coordinates.

        Parameters
        ----------
        point : array-like, shape=[n_samples, 2]
            Point in hyperbolic space in half-plane coordinates.

        Returns
        -------
        extrinsic : array-like, shape=[n_samples, 3]
            Point in hyperbolic plane in extrinsic coordinates.
        """
        assert point.shape[-1] == 2
        x, y = point[:, 0], point[:, 1]
        x2 = point[:, 0]**2
        den = x2 + (1 + y)**2
        x = gs.to_ndarray(x, to_ndim=2, axis=0)
        y = gs.to_ndarray(y, to_ndim=2, axis=0)
        x2 = gs.to_ndarray(x2, to_ndim=2, axis=0)
        den = gs.to_ndarray(den, to_ndim=2, axis=0)
        ball_point = gs.hstack((2 * x / den, (x2 + y**2 - 1) / den))
        return Hyperbolic._ball_to_extrinsic_coordinates(ball_point)
Пример #11
0
        def coefficients(ind_k):
            param_k = base_point[..., ind_k]
            param_sum = gs.sum(base_point, -1)
            c1 = 1 / gs.polygamma(
                1, param_k) / (1 / gs.polygamma(1, param_sum) -
                               gs.sum(1 / gs.polygamma(1, base_point), -1))
            c2 = -c1 * gs.polygamma(2, param_sum) / gs.polygamma(1, param_sum)

            mat_ones = gs.ones((n_points, self.dim, self.dim))
            mat_diag = from_vector_to_diagonal_matrix(
                -gs.polygamma(2, base_point) / gs.polygamma(1, base_point))
            arrays = [
                gs.zeros((1, ind_k)),
                gs.ones((1, 1)),
                gs.zeros((1, self.dim - ind_k - 1))
            ]
            vec_k = gs.tile(gs.hstack(arrays), (n_points, 1))
            val_k = gs.polygamma(2, param_k) / gs.polygamma(1, param_k)
            vec_k = gs.einsum('i,ij->ij', val_k, vec_k)
            mat_k = from_vector_to_diagonal_matrix(vec_k)

            mat = gs.einsum('i,ijk->ijk', c2, mat_ones)\
                - gs.einsum('i,ijk->ijk', c1, mat_diag) + mat_k

            return 1 / 2 * mat
Пример #12
0
    def _extrinsic_to_half_plane_coordinates(point):
        """Convert extrinsic to half plane coordinates.

        Convert the parameterization of a point in the hyperbolic plane
        from its intrinsic coordinates, to the poincare upper half plane
        coordinates.

        Parameters
        ----------
        point : array-like, shape=[n_samples, 2]
            Point in the hyperbolic plane in intrinsic coordinates.

        Returns
        -------
        point_half_plane : array-like, shape=[n_samples, 2]
            Point in the hyperbolic plane in Poincare upper half-plane
            coordinates.
        """
        point_ball = \
            Hyperbolic._extrinsic_to_ball_coordinates(point)
        assert point_ball.shape[-1] == 2
        point_ball_x, point_ball_y = point_ball[:, 0], point_ball[:, 1]
        point_ball_x2 = point_ball_x**2
        denom = point_ball_x2 + (1 - point_ball_y)**2

        point_ball_x = gs.to_ndarray(point_ball_x, to_ndim=2, axis=0)
        point_ball_y = gs.to_ndarray(point_ball_y, to_ndim=2, axis=0)
        point_ball_x2 = gs.to_ndarray(point_ball_x2, to_ndim=2, axis=0)
        denom = gs.to_ndarray(denom, to_ndim=2, axis=0)

        point_half_plane = gs.hstack(
            ((2 * point_ball_x) / denom,
             (1 - point_ball_x2 - point_ball_y**2) / denom))
        return point_half_plane
Пример #13
0
    def regularize(self, point, point_type=None):
        """Regularize the point into the manifold's canonical representation.

        Parameters
        ----------
        point : array-like, shape=[n_samples, dim]
                           or shape=[n_samples, dim_2, dim_2]
            Point to be regularized.
        point_type : str, {'vector', 'matrix'}
            Representation of point.

        Returns
        -------
        regularized_point : array-like, shape=[n_samples, dim]
                            or shape=[n_samples, dim_2, dim_2]
            Point in the manifold's canonical representation.
        """
        # TODO(nina): Vectorize.
        if point_type is None:
            point_type = self.default_point_type
        assert point_type in ['vector', 'matrix']

        regularized_point = [
            manifold_i.regularize(point_i)
            for manifold_i, point_i in zip(self.manifolds, point)]

        # TODO(nina): Put this in a decorator
        if point_type == 'vector':
            regularized_point = gs.hstack(regularized_point)
        elif point_type == 'matrix':
            regularized_point = gs.vstack(regularized_point)
        return gs.all(regularized_point)
Пример #14
0
    def regularize(self, point, point_type=None):
        """Regularize the point into the manifold's canonical representation.

        Parameters
        ----------
        point
        point_type : str, {'vector', 'matrix'}

        Returns
        -------
        regularize_points
        """
        # TODO(nina): Vectorize.
        if point_type is None:
            point_type = self.default_point_type
        assert point_type in ['vector', 'matrix']

        regularize_points = [self.manifold[i].regularize(point[i])
                             for i in range(self.n_manifolds)]

        # TODO(nina): Put this in a decorator
        if point_type == 'vector':
            regularize_points = gs.hstack(regularize_points)
        elif point_type == 'matrix':
            regularize_points = gs.vstack(regularize_points)
        return gs.all(regularize_points)

        return regularize_points
Пример #15
0
    def regularize(self, point, point_type=None):
        """Regularize the point into the manifold's canonical representation.

        Parameters
        ----------
        point : array-like, shape=[..., {dim, [dim_2, dim_2]}]
            Point to be regularized.
        point_type : str, {'vector', 'matrix'}
            Representation of point.

        Returns
        -------
        regularized_point : array-like, shape=[..., {dim, [dim_2, dim_2]}]
            Point in the manifold's canonical representation.
        """
        if point_type is None:
            point_type = self.default_point_type
        geomstats.error.check_parameter_accepted_values(
            point_type, 'point_type', ['vector', 'matrix'])

        if point_type == 'vector':
            intrinsic = self.metric.is_intrinsic(point)
            regularized_point = self._iterate_over_manifolds(
                'regularize', {'point': point}, intrinsic)
            regularized_point = gs.hstack(regularized_point)
        elif point_type == 'matrix':
            regularized_point = [
                manifold_i.regularize(point[:, i])
                for i, manifold_i in enumerate(self.manifolds)
            ]
            regularized_point = gs.stack(regularized_point, axis=1)
        return regularized_point
Пример #16
0
    def exp(self, tangent_vec, base_point, n_steps=N_STEPS):
        """Exponential map associated to the Fisher information metric.

        Exponential map at base_point of tangent_vec computed by integration
        of the geodesic equation (initial value problem), using the
        christoffel symbols.

        Parameters
        ----------
        tangent_vec : array-like, shape=[n_samples, dim]
        base_point : array-like, shape=[n_samples, dim]
        n_steps : int

        Returns
        -------
        exp : array-like, shape=[n_samples, dim]
        """
        base_point = gs.to_ndarray(base_point, to_ndim=2)
        tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2)

        def ivp(state, time):
            """Reformat the initial value problem geodesic ODE."""
            position, velocity = state[:2], state[2:]
            eq = self.geodesic_equation(velocity=velocity, position=position)
            return gs.hstack([velocity, eq])

        times = gs.linspace(0, 1, n_steps + 1)
        exp = []
        for point, vec in zip(base_point, tangent_vec):
            initial_state = gs.hstack([point, vec])
            geodesic = odeint(
                ivp, initial_state, times, tuple(), rtol=1e-6)
            exp.append(geodesic[-1, :2])
        return exp[0] if len(base_point) == 1 else gs.stack(exp)
Пример #17
0
        def coefficients(ind_k):
            """Christoffel symbols for contravariant index ind_k."""
            param_k = base_point[..., ind_k]
            param_sum = gs.sum(base_point, -1)
            c1 = (
                1
                / gs.polygamma(1, param_k)
                / (
                    1 / gs.polygamma(1, param_sum)
                    - gs.sum(1 / gs.polygamma(1, base_point), -1)
                )
            )
            c2 = -c1 * gs.polygamma(2, param_sum) / gs.polygamma(1, param_sum)

            mat_ones = gs.ones((n_points, self.dim, self.dim))
            mat_diag = from_vector_to_diagonal_matrix(
                -gs.polygamma(2, base_point) / gs.polygamma(1, base_point)
            )
            arrays = [
                gs.zeros((1, ind_k)),
                gs.ones((1, 1)),
                gs.zeros((1, self.dim - ind_k - 1)),
            ]
            vec_k = gs.tile(gs.hstack(arrays), (n_points, 1))
            val_k = gs.polygamma(2, param_k) / gs.polygamma(1, param_k)
            vec_k = gs.einsum("i,ij->ij", val_k, vec_k)
            mat_k = from_vector_to_diagonal_matrix(vec_k)

            mat = (
                gs.einsum("i,ijk->ijk", c2, mat_ones)
                - gs.einsum("i,ijk->ijk", c1, mat_diag)
                + mat_k
            )

            return 1 / 2 * mat
Пример #18
0
    def random_von_mises_fisher(self, kappa=10, n_samples=1):
        """Sample in the 2-sphere with the von Mises distribution.

        Sample in the 2-sphere with the von Mises distribution centered at the
        north pole.

        References
        ----------
        https://en.wikipedia.org/wiki/Von_Mises_distribution

        Parameters
        ----------
        kappa : int
            Kappa parameter of the von Mises distribution.
            Optional, default: 10.
        n_samples : int
            Number of samples.
            Optional, default: 1.

        Returns
        -------
        point : array-like, shape=[..., 3]
            Points sampled on the sphere in extrinsic coordinates
            in Euclidean space of dimension 3.
        """
        if self.dim != 2:
            raise NotImplementedError(
                'Sampling from the von Mises Fisher distribution'
                'is only implemented in dimension 2.')
        angle = 2. * gs.pi * gs.random.rand(n_samples)
        angle = gs.to_ndarray(angle, to_ndim=2, axis=1)
        unit_vector = gs.hstack((gs.cos(angle), gs.sin(angle)))
        scalar = gs.random.rand(n_samples)

        coord_z = 1. + 1. / kappa * gs.log(
            scalar + (1. - scalar) * gs.exp(gs.array(-2. * kappa)))
        coord_z = gs.to_ndarray(coord_z, to_ndim=2, axis=1)

        coord_xy = gs.sqrt(1. - coord_z**2) * unit_vector

        point = gs.hstack((coord_xy, coord_z))

        if n_samples == 1:
            point = gs.squeeze(point, axis=0)
        return point
Пример #19
0
 def _to_lie_algebra(self, tangent_vec):
     """Project vector rotation part onto skew-symmetric matrices."""
     translation_mask = gs.hstack(
         [gs.ones((self.n, ) * 2), 2 * gs.ones((self.n, 1))])
     translation_mask = gs.concatenate(
         [translation_mask, gs.zeros((1, self.n + 1))], axis=0)
     tangent_vec = tangent_vec * gs.where(translation_mask != 0.,
                                          gs.array(1.), gs.array(0.))
     tangent_vec = (tangent_vec - GeneralLinear.transpose(tangent_vec)) / 2.
     return tangent_vec * translation_mask
Пример #20
0
        def path(t):
            """Generate parameterized function for geodesic curve.

            Parameters
            ----------
            t : array-like, shape=[n_times,]
                Times at which to compute points of the geodesics.

            Returns
            -------
            geodesic : array-like, shape=[..., n_times, dim]
                Values of the geodesic at times t.
            """
            t = gs.to_ndarray(t, to_ndim=1)
            n_times = len(t)
            geod = []

            if n_times < n_steps:
                t_int = gs.linspace(0, 1, n_steps + 1)
                tangent_vecs = gs.einsum('i,...k->...ik', t,
                                         initial_tangent_vec)
                for point, vec in zip(initial_point, tangent_vecs):
                    point = gs.tile(point, (n_times, 1))
                    exp = []
                    for pt, vc in zip(point, vec):
                        initial_state = gs.hstack([pt, vc])
                        solution = odeint(ivp,
                                          initial_state,
                                          t_int, (),
                                          rtol=1e-6)
                        exp.append(solution[-1, :self.dim])
                    exp = exp[0] if n_times == 1 else gs.stack(exp)
                    geod.append(exp)
            else:
                t_int = t
                for point, vec in zip(initial_point, initial_tangent_vec):
                    initial_state = gs.hstack([point, vec])
                    solution = odeint(ivp, initial_state, t_int, (), rtol=1e-6)
                    geod.append(solution[:, :self.dim])

            return geod[0] if len(initial_point) == 1 else \
                gs.stack(geod)  # , axis=1)
Пример #21
0
def loss(y_pred, y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """
    Loss function given by a riemannian metric on a Lie group,
    by default the left-invariant canonical metric.
    """
    if gs.ndim(y_pred) == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if gs.ndim(y_true) == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'quaternion':
        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true = gs.hstack([y_true_rot_vec, y_true[:, 4:]])

    loss = lie_group.loss(y_pred, y_true, SE3, metric)
    return loss
Пример #22
0
    def test_Localization_adjoint_map(self):
        initial_state = gs.array([0.5, 1.0, 2.0])

        angle = initial_state[0]
        rotation = gs.array([[gs.cos(angle), -gs.sin(angle)],
                             [gs.sin(angle), gs.cos(angle)]])
        first_line = gs.eye(1, 3)
        last_lines = gs.hstack((gs.array([[2.0], [-1.0]]), rotation))
        expected = gs.vstack((first_line, last_lines))
        result = self.nonlinear_model.adjoint_map(initial_state)
        self.assertAllClose(expected, result)
Пример #23
0
    def fit(self, X, max_iter=100):
        """Predict for each data point the closest center in terms of
            riemannian_metric distance

        Parameters
        ----------
        X : array-like, shape=[n_samples, n_features]
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        max_iter : Maximum number of iterations

        Returns
        -------
        self : object
            Return centroids array
        """
        n_samples = X.shape[0]
        belongs = gs.zeros(n_samples)
        self.centroids = [
            gs.expand_dims(X[randint(0, n_samples - 1)], 0)
            for i in range(self.n_clusters)
        ]
        self.centroids = gs.concatenate(self.centroids)
        index = 0
        while index < max_iter:
            index += 1

            dists = [
                gs.to_ndarray(
                    self.riemannian_metric.dist(self.centroids[i], X), 2, 1)
                for i in range(self.n_clusters)
            ]
            dists = gs.hstack(dists)
            belongs = gs.argmin(dists, 1)
            old_centroids = gs.copy(self.centroids)
            for i in range(self.n_clusters):
                fold = gs.squeeze(X[belongs == i])
                if len(fold) > 0:
                    self.centroids[i] = self.riemannian_metric.mean(fold)

                else:
                    self.centroids[i] = X[randint(0, n_samples - 1)]

            centroids_distances = self.riemannian_metric.dist(
                old_centroids, self.centroids)

            if gs.mean(centroids_distances) < self.tol:
                if self.verbose > 0:
                    print("Convergence Reached after ", index, " iterations")

                return gs.copy(self.centroids)

        return gs.copy(self.centroids)
Пример #24
0
    def test_Localization_propagation_jacobian(self):
        time_step = gs.array([0.5])
        linear_vel = gs.array([1.0, 0.5])
        angular_vel = gs.array([0.0])
        increment = gs.concatenate((time_step, linear_vel, angular_vel),
                                   axis=0)

        first_line = gs.eye(1, 3)
        last_lines = gs.hstack((gs.array([[-0.25], [0.5]]), gs.eye(2)))
        expected = gs.vstack((first_line, last_lines))
        result = self.nonlinear_model.propagation_jacobian(None, increment)
        self.assertAllClose(expected, result)
Пример #25
0
    def matrix_from_tait_bryan_angles_extrinsic_zyx(self, tait_bryan_angles):
        """Convert Tait-Bryan angles to rot mat in extrensic coords (zyx).

        Convert a rotation given in terms of the tait bryan angles,
        [angle_1, angle_2, angle_3] in extrinsic (fixed) coordinate system
        in order zyx, into a rotation matrix.

        rot_mat = X(angle_1).Y(angle_2).Z(angle_3)
        where:
        - X(angle_1) is a rotation of angle angle_1 around axis x.
        - Y(angle_2) is a rotation of angle angle_2 around axis y.
        - Z(angle_3) is a rotation of angle angle_3 around axis z.

        Parameters
        ----------
        tait_bryan_angles : array-like, shape=[..., 3]

        Returns
        -------
        rot_mat : array-like, shape=[..., n, n]
        """
        n_tait_bryan_angles, _ = tait_bryan_angles.shape

        rot_mat = gs.zeros((n_tait_bryan_angles,) + (self.n,) * 2)
        angle_1 = tait_bryan_angles[:, 0]
        angle_2 = tait_bryan_angles[:, 1]
        angle_3 = tait_bryan_angles[:, 2]

        for i in range(n_tait_bryan_angles):
            cos_angle_1 = gs.cos(angle_1[i])
            sin_angle_1 = gs.sin(angle_1[i])
            cos_angle_2 = gs.cos(angle_2[i])
            sin_angle_2 = gs.sin(angle_2[i])
            cos_angle_3 = gs.cos(angle_3[i])
            sin_angle_3 = gs.sin(angle_3[i])

            column_1 = [[cos_angle_2 * cos_angle_3],
                        [(cos_angle_1 * sin_angle_3
                          + cos_angle_3 * sin_angle_1 * sin_angle_2)],
                        [(sin_angle_1 * sin_angle_3
                          - cos_angle_1 * cos_angle_3 * sin_angle_2)]]

            column_2 = [[- cos_angle_2 * sin_angle_3],
                        [(cos_angle_1 * cos_angle_3
                          - sin_angle_1 * sin_angle_2 * sin_angle_3)],
                        [(cos_angle_3 * sin_angle_1
                          + cos_angle_1 * sin_angle_2 * sin_angle_3)]]

            column_3 = [[sin_angle_2],
                        [- cos_angle_2 * sin_angle_1],
                        [cos_angle_1 * cos_angle_2]]
            rot_mat[i] = gs.hstack((column_1, column_2, column_3))
        return rot_mat
Пример #26
0
 def __init__(self, n):
     super(_SpecialEuclideanMatrices,
           self).__init__(default_point_type='matrix', n=n + 1)
     self.rotations = SpecialOrthogonal(n=n)
     self.translations = Euclidean(dim=n)
     self.n = n
     self.dim = int((n * (n + 1)) / 2)
     translation_mask = gs.hstack(
         [gs.ones((self.n, ) * 2), 2 * gs.ones((self.n, 1))])
     translation_mask = gs.concatenate(
         [translation_mask, gs.zeros((1, self.n + 1))], axis=0)
     self.translation_mask = translation_mask
Пример #27
0
def loss(y_pred,
         y_true,
         metric=SE3.left_canonical_metric,
         representation='vector'):
    """Loss function given by a Riemannian metric on a Lie group.

    Parameters
    ----------
    y_pred : array-like
        Prediction on SE(3).
    y_true : array-like
        Ground-truth on SE(3).
    metric : RiemannianMetric
        Metric used to compute the loss and gradient.
    representation : str, {'vector', 'matrix'}
        Representation chosen for points in SE(3).

    Returns
    -------
    lie_loss : array-like
        Loss using the Riemannian metric.
    """
    if gs.ndim(y_pred) == 1:
        y_pred = gs.expand_dims(y_pred, axis=0)
    if gs.ndim(y_true) == 1:
        y_true = gs.expand_dims(y_true, axis=0)

    if representation == 'quaternion':
        y_pred_rot_vec = SO3.rotation_vector_from_quaternion(y_pred[:, :4])
        y_pred = gs.hstack([y_pred_rot_vec, y_pred[:, 4:]])
        y_true_rot_vec = SO3.rotation_vector_from_quaternion(y_true[:, :4])
        y_true = gs.hstack([y_true_rot_vec, y_true[:, 4:]])

    lie_loss = lie_group.loss(y_pred, y_true, SE3, metric)
    if gs.ndim(lie_loss) == 2:
        lie_loss = gs.squeeze(lie_loss, axis=1)
    if gs.ndim(lie_loss) == 1 and gs.shape(lie_loss)[0] == 1:
        lie_loss = gs.squeeze(lie_loss, axis=0)

    return lie_loss
Пример #28
0
    def log(self, point, base_point):
        """Compute Riemannian logarithm of a curve wrt a base curve.

        Parameters
        ----------
        point : array-like, shape=[..., n_sampling_points, ambient_dim]
            Discrete curve.
        base_point : array-like, shape=[..., n_sampling_points, ambient_dim]
            Discrete curve to use as base point.

        Returns
        -------
        log : array-like, shape=[..., n_sampling_points, ambient_dim]
            Tangent vector to a discrete curve.
        """
        if not isinstance(self.ambient_metric, EuclideanMetric):
            raise AssertionError('The logarithm map is only implemented '
                                 'for discrete curves embedded in a '
                                 'Euclidean space.')
        point = gs.to_ndarray(point, to_ndim=3)
        base_point = gs.to_ndarray(base_point, to_ndim=3)
        n_curves, n_sampling_points, n_coords = point.shape

        curve_srv = self.square_root_velocity(point)
        base_curve_srv = self.square_root_velocity(base_point)

        base_curve_velocity = (n_sampling_points - 1) * (base_point[:, 1:, :] -
                                                         base_point[:, :-1, :])
        base_curve_velocity_norm = self.pointwise_norm(base_curve_velocity,
                                                       base_point[:, :-1, :])

        inner_prod = self.pointwise_inner_product(curve_srv - base_curve_srv,
                                                  base_curve_velocity,
                                                  base_point[:, :-1, :])
        coef_1 = gs.sqrt(base_curve_velocity_norm)
        coef_2 = 1 / base_curve_velocity_norm**(3 / 2) * inner_prod

        term_1 = gs.einsum('ij,ijk->ijk', coef_1, curve_srv - base_curve_srv)
        term_2 = gs.einsum('ij,ijk->ijk', coef_2, base_curve_velocity)
        log_derivative = term_1 + term_2

        log_starting_points = self.ambient_metric.log(
            point=point[:, 0, :], base_point=base_point[:, 0, :])
        log_starting_points = gs.to_ndarray(
            log_starting_points, to_ndim=3, axis=1)

        log_cumsum = gs.hstack(
            [gs.zeros((n_curves, 1, n_coords)),
             gs.cumsum(log_derivative, -2)])
        log = log_starting_points + 1 / (n_sampling_points - 1) * log_cumsum

        return log
Пример #29
0
    def exp(self, tangent_vec, base_point, n_steps=N_STEPS):
        """Compute the exponential map.

        Comute the exponential map associated to the Fisher information
        metric at base_point of tangent_vec. This is achieved  by integration
        of the geodesic equation (initial value problem), using the Christoffel
        symbols.

        Parameters
        ----------
        tangent_vec : array-like, shape=[..., dim]
            Tangent vector at base point.
        base_point : array-like, shape=[..., dim]
            Base point.
        n_steps : int
            Number of steps for integration.
            Optional, default: 100.

        Returns
        -------
        exp : array-like, shape=[..., dim]
            End point of the geodesic starting at base_point with
            initial velocity tangent_vec and stopping at time 1.
        """
        base_point = gs.to_ndarray(base_point, to_ndim=2)
        tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2)

        n_base_points = base_point.shape[0]
        n_tangent_vecs = tangent_vec.shape[0]
        if n_base_points > n_tangent_vecs:
            raise ValueError('There cannot be more base points than tangent '
                             'vectors.')
        if n_tangent_vecs > n_base_points:
            if n_base_points > 1:
                raise ValueError('For several tangent vectors, specify '
                                 'either one or the same number of base '
                                 'points.')
            base_point = gs.tile(base_point, (n_tangent_vecs, 1))

        def ivp(state, _):
            """Reformat the initial value problem geodesic ODE."""
            position, velocity = state[:self.dim], state[self.dim:]
            eq = self.geodesic_equation(velocity=velocity, position=position)
            return gs.hstack(eq)

        times = gs.linspace(0, 1, n_steps + 1)
        exp = []
        for point, vec in zip(base_point, tangent_vec):
            initial_state = gs.hstack([point, vec])
            geodesic = odeint(ivp, initial_state, times, (), rtol=1e-6)
            exp.append(geodesic[-1, :self.dim])
        return exp[0] if len(base_point) == 1 else gs.stack(exp)
Пример #30
0
    def inner_product(
            self, tangent_vec_a, tangent_vec_b, base_point=None,
            point_type=None):
        """Compute the inner-product of two tangent vectors at a base point.

        Inner product defined by the Riemannian metric at point `base_point`
        between tangent vectors `tangent_vec_a` and `tangent_vec_b`.

        Parameters
        ----------
        tangent_vec_a : array-like, shape=[n_samples, dimension + 1]
            First tangent vector at base point.
        tangent_vec_b : array-like, shape=[n_samples, dimension + 1]
            Second tangent vector at base point.
        base_point : array-like, shape=[n_samples, dimension + 1], optional
            Point on the manifold.
        point_type : str, {'vector', 'matrix'}
            Type of representation used for points.

        Returns
        -------
        inner_prod : array-like, shape=[n_samples, 1]
            Inner-product of the two tangent vectors.
        """
        if base_point is None:
            base_point = [None, ] * self.n_metrics

        if point_type is None:
            point_type = self.default_point_type
        if point_type == 'vector':
            tangent_vec_a = gs.to_ndarray(tangent_vec_a, to_ndim=2)
            tangent_vec_b = gs.to_ndarray(tangent_vec_b, to_ndim=2)
            base_point = gs.to_ndarray(base_point, to_ndim=2)
            intrinsic = self._is_intrinsic(tangent_vec_b)
            args = {'tangent_vec_a': tangent_vec_a,
                    'tangent_vec_b': tangent_vec_b,
                    'base_point': base_point}
            inner_prod = self._iterate_over_metrics(
                'inner_product', args, intrinsic)
            return gs.sum(gs.hstack(inner_prod), axis=1)
        elif point_type == 'matrix':
            tangent_vec_a = gs.to_ndarray(tangent_vec_a, to_ndim=3)
            tangent_vec_b = gs.to_ndarray(tangent_vec_b, to_ndim=3)
            base_point = gs.to_ndarray(base_point, to_ndim=3)
            inner_products = [metric.inner_product(tangent_vec_a[:, i],
                                                   tangent_vec_b[:, i],
                                                   base_point[:, i])
                              for i, metric in enumerate(self.metrics)]
            return sum(inner_products)
        else:
            raise ValueError('invalid point_type argument: {}, expected '
                             'either matrix of vector'.format(point_type))