Пример #1
0
    def compute_coordinates(self, point):
        """Compute the ellipse coordinates of a 2D SPD matrix.

        Parameters
        ----------
        point : array-like, shape=[2, 2]
            SPD matrix.

        Returns
        -------
        x_coords : array-like, shape=[n_sampling_points,]
            x_coords coordinates of the sampling points on the discretized ellipse.
        Y: array-like, shape = [n_sampling_points,]
            y coordinates of the sampling points on the discretized ellipse.
        """
        eigvalues, eigvectors = gs.linalg.eigh(point)
        eigvalues = gs.where(eigvalues < gs.atol, gs.atol, eigvalues)

        [eigvalue1, eigvalue2] = eigvalues

        rot_sin = eigvectors[1, 0]
        rot_cos = eigvectors[0, 0]
        thetas = gs.linspace(0.0, 2 * gs.pi, self.n_sampling_points + 1)

        x_coords = eigvalue1 * gs.cos(thetas) * rot_cos
        x_coords -= rot_sin * eigvalue2 * gs.sin(thetas)
        y_coords = eigvalue1 * gs.cos(thetas) * rot_sin
        y_coords += rot_cos * eigvalue2 * gs.sin(thetas)
        return x_coords, y_coords
Пример #2
0
    def test_belongs(self):
        theta = gs.pi / 3
        point_1 = gs.array([[gs.cos(theta), -gs.sin(theta), 2.],
                            [gs.sin(theta), gs.cos(theta), 3.], [0., 0., 1.]])
        result = self.group.belongs(point_1)
        self.assertTrue(result)

        point_2 = gs.array([[gs.cos(theta), -gs.sin(theta), 2.],
                            [gs.sin(theta), gs.cos(theta), 3.], [0., 0., 0.]])
        result = self.group.belongs(point_2)
        self.assertFalse(result)

        point = gs.array([point_1, point_2])
        expected = gs.array([True, False])
        result = self.group.belongs(point)
        self.assertAllClose(result, expected)

        point = point_1[0]
        result = self.group.belongs(point)
        self.assertFalse(result)

        point = gs.zeros((2, 3))
        result = self.group.belongs(point)
        self.assertFalse(result)

        point = gs.zeros((2, 2, 3))
        result = self.group.belongs(point)
        self.assertFalse(gs.all(result))
        self.assertAllClose(result.shape, (2, ))
Пример #3
0
    def spherical_to_extrinsic(self, point_spherical):
        """Convert point from spherical to extrensic coordinates.

        Convert from the spherical coordinates in the Hypersphere
        to the extrinsic coordinates in Euclidean space.
        Only implemented in dimension 2.

        Parameters
        ----------
        point_spherical : array-like, shape=[n_samples, dimension]

        Returns
        -------
        point_extrinsic : array_like, shape=[n_samples, dimension + 1]
        """
        if self.dimension != 2:
            raise NotImplementedError(
                'The conversion from spherical coordinates'
                ' to extrinsic coordinates is implemented'
                ' only in dimension 2.')
        point_spherical = gs.to_ndarray(point_spherical, to_ndim=2)
        theta = point_spherical[:, 0]
        phi = point_spherical[:, 1]
        point_extrinsic = gs.zeros(
            (point_spherical.shape[0], self.dimension + 1))
        point_extrinsic[:, 0] = gs.sin(theta) * gs.cos(phi)
        point_extrinsic[:, 1] = gs.sin(theta) * gs.sin(phi)
        point_extrinsic[:, 2] = gs.cos(theta)
        assert self.belongs(point_extrinsic).all()

        return point_extrinsic
Пример #4
0
 def rotation(theta, phi):
     """Rotation sending a triangle at pole to location theta, phi."""
     rot_th = gs.array([[gs.cos(theta), -gs.sin(theta), 0.],
                        [gs.sin(theta), gs.cos(theta), 0.], [0., 0., 1.]])
     rot_phi = gs.array([[gs.cos(phi), 0., gs.sin(phi)], [0., 1., 0.],
                         [-gs.sin(phi), 0, gs.cos(phi)]])
     return rot_th @ rot_phi @ gs.transpose(rot_th)
Пример #5
0
    def christoffels(self, point, point_type='spherical'):
        """Compute Christoffel symbols.

        Only implemented in dimension 2 and for spherical coordinates.

        Parameters
        ----------
        point : array-like, shape=[n_samples, dimension]

        Returns
        -------
        christoffel : array-like, shape=[n_samples,
                                         contravariant index,
                                         first covariant index,
                                         second covariant index]
        """
        if self.dimension != 2 or point_type != 'spherical':
            raise NotImplementedError(
                'The Christoffel symbols are only implemented'
                ' for spherical coordinates in the 2-sphere')
        point = gs.to_ndarray(point, to_ndim=2)
        n_samples = point.shape[0]
        christoffel = gs.zeros(
            (n_samples, self.dimension, self.dimension, self.dimension))
        christoffel[:, 0, 1, 1] = -gs.sin(point[:, 0]) * gs.cos(point[:, 0])
        christoffel[:, 1, 0, 1] = gs.cos(point[:, 0]) / gs.sin(point[:, 0])
        christoffel[:, 1, 1, 0] = gs.cos(point[:, 0]) / gs.sin(point[:, 0])

        return christoffel
Пример #6
0
    def test_assignment_with_matrices(self):
        np_array = _np.zeros((2, 3, 3))
        gs_array = gs.zeros((2, 3, 3))

        np_array[:, 0, 1] = 44.

        gs_array = gs.assignment(gs_array, 44., (0, 1), axis=0)

        self.assertAllCloseToNp(gs_array, np_array)

        n_samples = 3
        theta = _np.random.rand(5)
        phi = _np.random.rand(5)
        np_array = _np.zeros((n_samples, 5, 4))
        gs_array = gs.array(np_array)
        np_array[0, :, 0] = gs.cos(theta) * gs.cos(phi)
        np_array[0, :, 1] = -gs.sin(theta) * gs.sin(phi)
        gs_array = gs.assignment(gs_array,
                                 gs.cos(theta) * gs.cos(phi), (0, 0),
                                 axis=1)
        gs_array = gs.assignment(gs_array,
                                 -gs.sin(theta) * gs.sin(phi), (0, 1),
                                 axis=1)

        self.assertAllCloseToNp(gs_array, np_array)
Пример #7
0
    def random_uniform(self, n_samples=1, bound=0.5):
        """
        Sample in the Hypersphere with the uniform distribution.

        Parameters
        ----------
        n_samples : int, optional
        bound: float, optional

        Returns
        -------
        point : array-like, shape=[n_samples, dimension + 1]
        """
        size = (n_samples, self.dimension)

        if bound is None:
            spherical_coord = gs.random.rand(*size) * gs.pi
            spherical_coord[:, -1] *= 2

            point = gs.zeros((n_samples, self.dimension + 1))
            for i in range(self.dimension):
                point[:,
                      i] = (gs.prod(gs.sin(spherical_coord[:, :i]), axis=1) *
                            gs.cos(spherical_coord[:, i]))
            point[:, -1] = gs.prod(gs.sin(spherical_coord), axis=1)

        else:
            assert bound <= 0.5
            point = bound * (2 * gs.random.rand(*size) - 1)
            point = self.intrinsic_to_extrinsic_coords(point)

        return point
Пример #8
0
    def christoffels(self, point, point_type='spherical'):
        """Compute Christoffel symbols.

        Only implemented in dimension 2 and for spherical coordinates.

        Parameters
        ----------
        point : array-like, shape=[n_samples, dimension]

        point_type: str

        Returns
        -------
        christoffel : array-like, shape=[n_samples,
                                         contravariant index,
                                         first covariant index,
                                         second covariant index]
        """
        if self.dimension != 2 or point_type != 'spherical':
            raise NotImplementedError(
                'The Christoffel symbols are only implemented'
                ' for spherical coordinates in the 2-sphere')

        point = gs.to_ndarray(point, to_ndim=2)
        christoffel = []
        for sample in point:
            gamma_0 = gs.array([[0, 0],
                                [0, -gs.sin(sample[0]) * gs.cos(sample[0])]])
            gamma_1 = gs.array([[0, gs.cos(sample[0]) / gs.sin(sample[0])],
                                [gs.cos(sample[0]) / gs.sin(sample[0]), 0]])
            christoffel.append(gs.stack([gamma_0, gamma_1]))

        return gs.stack(christoffel)
Пример #9
0
    def christoffels(self, point, point_type='spherical'):
        """Compute the Christoffel symbols at a point.

        Only implemented in dimension 2 and for spherical coordinates.

        Parameters
        ----------
        point : array-like, shape=[n_samples, dim]
            Point on hypersphere where the Christoffel symbols are computed.

        point_type: str, {'spherical', 'intrinsic', 'extrinsic'}
            Coordinates in which to express the Christoffel symbols.

        Returns
        -------
        christoffel : array-like, shape=[n_samples, contravariant index, 1st
                                         covariant index, 2nd covariant index]
            Christoffel symbols at point.
        """
        if self.dim != 2 or point_type != 'spherical':
            raise NotImplementedError(
                'The Christoffel symbols are only implemented'
                ' for spherical coordinates in the 2-sphere')

        point = gs.to_ndarray(point, to_ndim=2)
        christoffel = []
        for sample in point:
            gamma_0 = gs.array([[0, 0],
                                [0, -gs.sin(sample[0]) * gs.cos(sample[0])]])
            gamma_1 = gs.array([[0, gs.cos(sample[0]) / gs.sin(sample[0])],
                                [gs.cos(sample[0]) / gs.sin(sample[0]), 0]])
            christoffel.append(gs.stack([gamma_0, gamma_1]))

        return gs.stack(christoffel)
Пример #10
0
    def spherical_to_extrinsic(self, point_spherical):
        """Convert point from spherical to extrinsic coordinates.

        Convert from the spherical coordinates in the hypersphere
        to the extrinsic coordinates in Euclidean space.
        Only implemented in dimension 2.

        Parameters
        ----------
        point_spherical : array-like, shape=[n_samples, dim]
            Point on the sphere, in spherical coordinates.

        Returns
        -------
        point_extrinsic : array_like, shape=[n_samples, dim + 1]
            Point on the sphere, in extrinsic coordinates in Euclidean space.
        """
        if self.dim != 2:
            raise NotImplementedError(
                'The conversion from spherical coordinates'
                ' to extrinsic coordinates is implemented'
                ' only in dimension 2.')

        theta = point_spherical[:, 0]
        phi = point_spherical[:, 1]
        point_extrinsic = gs.zeros((point_spherical.shape[0], self.dim + 1))
        point_extrinsic[:, 0] = gs.sin(theta) * gs.cos(phi)
        point_extrinsic[:, 1] = gs.sin(theta) * gs.sin(phi)
        point_extrinsic[:, 2] = gs.cos(theta)
        if not gs.all(self.belongs(point_extrinsic)):
            raise ValueError('Points do not belong to the manifold.')

        return point_extrinsic
Пример #11
0
def _sphere_immersion(spherical_coords):
    theta = spherical_coords[..., 0]
    phi = spherical_coords[..., 1]
    return gs.array([
        gs.cos(phi) * gs.sin(theta),
        gs.sin(phi) * gs.sin(theta),
        gs.cos(theta),
    ])
Пример #12
0
def group_useful_matrix(theta, elem_33=1.0):
    return gs.array(
        [
            [gs.cos(theta), -gs.sin(theta), 2.0],
            [gs.sin(theta), gs.cos(theta), 3.0],
            [0.0, 0.0, elem_33],
        ]
    )
Пример #13
0
 def convert_to_spherical_coordinates(self, points):
     """Convert polar coordinates to spherical one."""
     coords_theta, coords_phi = self.convert_to_polar_coordinates(points)
     coords_x = 0.5 * gs.cos(coords_theta) * gs.sin(coords_phi)
     coords_y = 0.5 * gs.sin(coords_theta) * gs.sin(coords_phi)
     coords_z = 0.5 * gs.cos(coords_phi)
     spherical_coords = gs.transpose(gs.stack((coords_x, coords_y, coords_z)))
     return spherical_coords
Пример #14
0
    def test_rotation_vector_from_matrix(self):
        angle = 0.12
        rot_mat = gs.array([[gs.cos(angle), -gs.sin(angle)],
                            [gs.sin(angle), gs.cos(angle)]])
        result = self.group.rotation_vector_from_matrix(rot_mat)
        expected = gs.array([0.12])

        self.assertAllClose(result, expected)
Пример #15
0
    def test_Localization_rotation_matrix(self):
        initial_state = gs.array([0.5, 1.0, 2.0])

        angle = initial_state[0]
        rotation = gs.array([[gs.cos(angle), -gs.sin(angle)],
                             [gs.sin(angle), gs.cos(angle)]])
        expected = rotation
        result = self.nonlinear_model.rotation_matrix(angle)
        self.assertAllClose(expected, result)
Пример #16
0
    def test_Localization_innovation(self):
        initial_state = gs.array([0.5, 1.0, 2.0])
        measurement = gs.array([0.7, 2.1])

        angle = initial_state[0]
        rotation = gs.array([[gs.cos(angle), -gs.sin(angle)],
                             [gs.sin(angle), gs.cos(angle)]])
        expected = gs.matmul(gs.transpose(rotation), gs.array([-0.3, 0.1]))
        result = self.nonlinear_model.innovation(initial_state, measurement)
        self.assertAllClose(expected, result)
Пример #17
0
def _expected_jacobian_immersion(point):
    theta = point[..., 0]
    phi = point[..., 1]
    jacobian = gs.array([
        [gs.cos(phi) * gs.cos(theta), -gs.sin(phi) * gs.sin(theta)],
        [gs.sin(phi) * gs.cos(theta),
         gs.cos(phi) * gs.sin(theta)],
        [-gs.sin(theta), 0.0],
    ])
    return jacobian
Пример #18
0
    def test_Localization_adjoint_map(self):
        initial_state = gs.array([0.5, 1.0, 2.0])

        angle = initial_state[0]
        rotation = gs.array([[gs.cos(angle), -gs.sin(angle)],
                             [gs.sin(angle), gs.cos(angle)]])
        first_line = gs.eye(1, 3)
        last_lines = gs.hstack((gs.array([[2.0], [-1.0]]), rotation))
        expected = gs.vstack((first_line, last_lines))
        result = self.nonlinear_model.adjoint_map(initial_state)
        self.assertAllClose(expected, result)
Пример #19
0
    def matrix_from_tait_bryan_angles_extrinsic_zyx(self, tait_bryan_angles):
        """Convert Tait-Bryan angles to rot mat in extrensic coords (zyx).

        Convert a rotation given in terms of the tait bryan angles,
        [angle_1, angle_2, angle_3] in extrinsic (fixed) coordinate system
        in order zyx, into a rotation matrix.

        rot_mat = X(angle_1).Y(angle_2).Z(angle_3)
        where:
        - X(angle_1) is a rotation of angle angle_1 around axis x.
        - Y(angle_2) is a rotation of angle angle_2 around axis y.
        - Z(angle_3) is a rotation of angle angle_3 around axis z.

        Parameters
        ----------
        tait_bryan_angles : array-like, shape=[..., 3]

        Returns
        -------
        rot_mat : array-like, shape=[..., n, n]
        """
        n_tait_bryan_angles, _ = tait_bryan_angles.shape

        rot_mat = gs.zeros((n_tait_bryan_angles,) + (self.n,) * 2)
        angle_1 = tait_bryan_angles[:, 0]
        angle_2 = tait_bryan_angles[:, 1]
        angle_3 = tait_bryan_angles[:, 2]

        for i in range(n_tait_bryan_angles):
            cos_angle_1 = gs.cos(angle_1[i])
            sin_angle_1 = gs.sin(angle_1[i])
            cos_angle_2 = gs.cos(angle_2[i])
            sin_angle_2 = gs.sin(angle_2[i])
            cos_angle_3 = gs.cos(angle_3[i])
            sin_angle_3 = gs.sin(angle_3[i])

            column_1 = [[cos_angle_2 * cos_angle_3],
                        [(cos_angle_1 * sin_angle_3
                          + cos_angle_3 * sin_angle_1 * sin_angle_2)],
                        [(sin_angle_1 * sin_angle_3
                          - cos_angle_1 * cos_angle_3 * sin_angle_2)]]

            column_2 = [[- cos_angle_2 * sin_angle_3],
                        [(cos_angle_1 * cos_angle_3
                          - sin_angle_1 * sin_angle_2 * sin_angle_3)],
                        [(cos_angle_3 * sin_angle_1
                          + cos_angle_1 * sin_angle_2 * sin_angle_3)]]

            column_3 = [[sin_angle_2],
                        [- cos_angle_2 * sin_angle_1],
                        [cos_angle_1 * cos_angle_2]]
            rot_mat[i] = gs.hstack((column_1, column_2, column_3))
        return rot_mat
Пример #20
0
    def draw(self, n_theta=25, n_phi=13, scale=0.05, elev=60.0, azim=0.0):
        """Draw the sphere regularly sampled with corresponding triangles."""
        self.set_ax()
        self.set_view(elev=elev, azim=azim)
        self.ax.set_axis_off()
        plt.tight_layout()

        coords_theta = gs.linspace(0.0, 2.0 * gs.pi, n_theta)
        coords_phi = gs.linspace(0.0, gs.pi, n_phi)

        coords_x = gs.to_numpy(0.5 * gs.outer(gs.sin(coords_phi), gs.cos(coords_theta)))
        coords_y = gs.to_numpy(0.5 * gs.outer(gs.sin(coords_phi), gs.sin(coords_theta)))
        coords_z = gs.to_numpy(
            0.5 * gs.outer(gs.cos(coords_phi), gs.ones_like(coords_theta))
        )

        self.ax.plot_surface(
            coords_x,
            coords_y,
            coords_z,
            rstride=1,
            cstride=1,
            color="grey",
            linewidth=0,
            alpha=0.1,
            zorder=-1,
        )
        self.ax.plot_wireframe(
            coords_x,
            coords_y,
            coords_z,
            linewidths=0.6,
            color="grey",
            alpha=0.6,
            zorder=-1,
        )

        def lim(theta):
            return (
                gs.pi
                - self.elev
                + (2.0 * self.elev - gs.pi) / gs.pi * abs(self.azim - theta)
            )

        for theta in gs.linspace(0.0, 2.0 * gs.pi, n_theta // 2 + 1):
            for phi in gs.linspace(0.0, gs.pi, n_phi):
                if theta <= self.azim + gs.pi and phi <= lim(theta):
                    self.draw_triangle(theta, phi, scale)
                if theta > self.azim + gs.pi and phi < lim(
                    2.0 * self.azim + 2.0 * gs.pi - theta
                ):
                    self.draw_triangle(theta, phi, scale)
Пример #21
0
    def tangent_spherical_to_extrinsic(self, tangent_vec_spherical,
                                       base_point_spherical):
        """Convert tangent vector from spherical to extrinsic coordinates.

        Convert from the spherical coordinates in the hypersphere
        to the extrinsic coordinates in Euclidean space for a tangent
        vector. Only implemented in dimension 2.

        Parameters
        ----------
        tangent_vec_spherical : array-like, shape=[..., dim]
            Tangent vector to the sphere, in spherical coordinates.
        base_point_spherical : array-like, shape=[..., dim]
            Point on the sphere, in spherical coordinates.

        Returns
        -------
        tangent_vec_extrinsic : array-like, shape=[..., dim + 1]
            Tangent vector to the sphere, at base point,
            in extrinsic coordinates in Euclidean space.
        """
        if self.dim != 2:
            raise NotImplementedError(
                'The conversion from spherical coordinates'
                ' to extrinsic coordinates is implemented'
                ' only in dimension 2.')

        n_samples = base_point_spherical.shape[0]
        theta = base_point_spherical[:, 0]
        phi = base_point_spherical[:, 1]
        jac = gs.zeros((n_samples, self.dim + 1, self.dim))

        zeros = gs.zeros(n_samples)

        jac = gs.concatenate([
            gs.array([[[
                gs.cos(theta[i]) * gs.cos(phi[i]),
                -gs.sin(theta[i]) * gs.sin(phi[i])
            ],
                       [
                           gs.cos(theta[i]) * gs.sin(phi[i]),
                           gs.sin(theta[i]) * gs.cos(phi[i])
                       ], [-gs.sin(theta[i]), zeros[i]]]])
            for i in range(n_samples)
        ],
                             axis=0)

        tangent_vec_extrinsic = gs.einsum('...ij,...j->...i', jac,
                                          tangent_vec_spherical)

        return tangent_vec_extrinsic
Пример #22
0
    def tangent_spherical_to_extrinsic(
        self, tangent_vec_spherical, base_point_spherical
    ):
        """Convert tangent vector from spherical to extrinsic coordinates.

        Convert from the spherical coordinates in the hypersphere
        to the extrinsic coordinates in Euclidean space for a tangent
        vector. Only implemented in dimension 2.

        Parameters
        ----------
        tangent_vec_spherical : array-like, shape=[..., dim]
            Tangent vector to the sphere, in spherical coordinates.
        base_point_spherical : array-like, shape=[..., dim]
            Point on the sphere, in spherical coordinates.

        Returns
        -------
        tangent_vec_extrinsic : array-like, shape=[..., dim + 1]
            Tangent vector to the sphere, at base point,
            in extrinsic coordinates in Euclidean space.
        """
        if self.dim != 2:
            raise NotImplementedError(
                "The conversion from spherical coordinates"
                " to extrinsic coordinates is implemented"
                " only in dimension 2."
            )

        axes = (2, 0, 1) if base_point_spherical.ndim == 2 else (0, 1)
        theta = base_point_spherical[..., 0]
        phi = base_point_spherical[..., 1]
        phi = gs.where(theta == 0.0, 0.0, phi)

        zeros = gs.zeros_like(theta)

        jac = gs.array(
            [
                [gs.cos(theta) * gs.cos(phi), -gs.sin(theta) * gs.sin(phi)],
                [gs.cos(theta) * gs.sin(phi), gs.sin(theta) * gs.cos(phi)],
                [-gs.sin(theta), zeros],
            ]
        )
        jac = gs.transpose(jac, axes)

        tangent_vec_extrinsic = gs.einsum(
            "...ij,...j->...i", jac, tangent_vec_spherical
        )

        return tangent_vec_extrinsic
Пример #23
0
    def draw_triangle(self, r, theta, scale):
        """Draw the corresponding triangle on the disk at r, theta."""
        u_theta = gs.cos(theta) * self.ua + gs.sin(theta) * self.na
        triangle = gs.cos(r) * self.pole + gs.sin(r) * u_theta
        triangle = scale * triangle

        x = list(r * gs.cos(theta) + triangle[:, 0])
        x = x + [x[0]]
        y = list(r * gs.sin(theta) + triangle[:, 1])
        y = y + [y[0]]

        self.ax.plot(x, y, 'grey', zorder=1)
        c = ['red', 'green', 'blue']
        for i in range(3):
            self.ax.scatter(x[i], y[i], color=c[i], s=10, alpha=1, zorder=1)
Пример #24
0
    def parallel_transport(tangent_vec_a, tangent_vec_b, base_point):
        r"""Compute the parallel transport of a tangent vector.

        Closed-form solution for the parallel transport of a tangent vector a
        along the geodesic defined by :math: `t \mapsto exp_(base_point)(t*
        tangent_vec_b)`.

        Parameters
        ----------
        tangent_vec_a : array-like, shape=[..., dim + 1]
            Tangent vector at base point to be transported.
        tangent_vec_b : array-like, shape=[..., dim + 1]
            Tangent vector at base point, along which the parallel transport
            is computed.
        base_point : array-like, shape=[..., dim + 1]
            Point on the hypersphere.

        Returns
        -------
        transported_tangent_vec: array-like, shape=[..., dim + 1]
            Transported tangent vector at `exp_(base_point)(tangent_vec_b)`.
        """
        theta = gs.linalg.norm(tangent_vec_b, axis=-1)
        normalized_b = gs.einsum('...,...i->...i', 1 / theta, tangent_vec_b)
        pb = gs.einsum('...i,...i->...', tangent_vec_a, normalized_b)
        p_orth = tangent_vec_a - gs.einsum('...,...i->...i', pb, normalized_b)
        transported = \
            - gs.einsum('...,...i->...i', gs.sin(theta) * pb, base_point)\
            + gs.einsum('...,...i->...i', gs.cos(theta) * pb, normalized_b)\
            + p_orth
        return transported
Пример #25
0
 def __init__(self, n_angles=100, points=None):
     angles = gs.linspace(0, 2 * gs.pi, n_angles)
     self.circle_x = gs.cos(angles)
     self.circle_y = gs.sin(angles)
     self.points = []
     if points is not None:
         self.add_points(points)
Пример #26
0
    def fibonnaci_points(self, n_points=16000):
        """Spherical Fibonacci point sets yield nearly uniform point
        distributions on the unit sphere."""
        x_vals = []
        y_vals = []
        z_vals = []

        offset = 2. / n_points
        increment = gs.pi * (3. - gs.sqrt(5.))

        for i in range(n_points):
            y = ((i * offset) - 1) + (offset / 2)
            r = gs.sqrt(1 - pow(y, 2))

            phi = ((i + 1) % n_points) * increment

            x = gs.cos(phi) * r
            z = gs.sin(phi) * r

            x_vals.append(x)
            y_vals.append(y)
            z_vals.append(z)

        x_vals = [(self.radius * i) for i in x_vals]
        y_vals = [(self.radius * i) for i in y_vals]
        z_vals = [(self.radius * i) for i in z_vals]

        return gs.array([x_vals, y_vals, z_vals])
Пример #27
0
    def __init__(self, n_meridians=40, n_circles_latitude=None, points=None):
        if n_circles_latitude is None:
            n_circles_latitude = max(n_meridians / 2, 4)

        u, v = gs.meshgrid(gs.arange(0, 2 * gs.pi, 2 * gs.pi / n_meridians),
                           gs.arange(0, gs.pi, gs.pi / n_circles_latitude))

        self.center = gs.zeros(3)
        self.radius = 1
        self.sphere_x = self.center[0] + self.radius * gs.cos(u) * gs.sin(v)
        self.sphere_y = self.center[1] + self.radius * gs.sin(u) * gs.sin(v)
        self.sphere_z = self.center[2] + self.radius * gs.cos(v)

        self.points = []
        if points is not None:
            self.add_points(points)
Пример #28
0
    def test_Localization_propagate(self):
        initial_state = gs.array([0.5, 1.0, 2.0])
        time_step = gs.array([0.5])
        linear_vel = gs.array([1.0, 0.5])
        angular_vel = gs.array([0.0])
        increment = gs.concatenate((time_step, linear_vel, angular_vel),
                                   axis=0)

        angle = initial_state[0]
        rotation = gs.array([[gs.cos(angle), -gs.sin(angle)],
                             [gs.sin(angle), gs.cos(angle)]])
        next_position = initial_state[1:] + time_step * gs.matmul(
            rotation, linear_vel)
        expected = gs.concatenate((gs.array([angle]), next_position), axis=0)
        result = self.nonlinear_model.propagate(initial_state, increment)
        self.assertAllClose(expected, result)
Пример #29
0
 def convert_to_planar_coordinates(self, points):
     """Convert polar coordinates to spherical one."""
     coords_r, coords_theta = self.convert_to_polar_coordinates(points)
     coords_x = coords_r * gs.cos(coords_theta)
     coords_y = coords_r * gs.sin(coords_theta)
     planar_coords = gs.transpose(gs.stack((coords_x, coords_y)))
     return planar_coords
Пример #30
0
    def log(self, point, base_point):
        """
        Riemannian logarithm of a point wrt a base point.
        """
        point = gs.to_ndarray(point, to_ndim=2)
        base_point = gs.to_ndarray(base_point, to_ndim=2)

        norm_base_point = self.embedding_metric.norm(base_point)
        norm_point = self.embedding_metric.norm(point)
        inner_prod = self.embedding_metric.inner_product(base_point, point)
        cos_angle = inner_prod / (norm_base_point * norm_point)
        cos_angle = gs.clip(cos_angle, -1., 1.)

        angle = gs.arccos(cos_angle)
        angle = gs.to_ndarray(angle, to_ndim=1)
        angle = gs.to_ndarray(angle, to_ndim=2, axis=1)

        mask_0 = gs.isclose(angle, 0.)
        mask_else = gs.equal(mask_0, gs.array(False))

        mask_0_float = gs.cast(mask_0, gs.float32)
        mask_else_float = gs.cast(mask_else, gs.float32)

        coef_1 = gs.zeros_like(angle)
        coef_2 = gs.zeros_like(angle)

        coef_1 += mask_0_float * (1. + INV_SIN_TAYLOR_COEFFS[1] * angle**2 +
                                  INV_SIN_TAYLOR_COEFFS[3] * angle**4 +
                                  INV_SIN_TAYLOR_COEFFS[5] * angle**6 +
                                  INV_SIN_TAYLOR_COEFFS[7] * angle**8)
        coef_2 += mask_0_float * (1. + INV_TAN_TAYLOR_COEFFS[1] * angle**2 +
                                  INV_TAN_TAYLOR_COEFFS[3] * angle**4 +
                                  INV_TAN_TAYLOR_COEFFS[5] * angle**6 +
                                  INV_TAN_TAYLOR_COEFFS[7] * angle**8)

        # This avoids division by 0.
        angle += mask_0_float * 1.

        coef_1 += mask_else_float * angle / gs.sin(angle)
        coef_2 += mask_else_float * angle / gs.tan(angle)

        log = (gs.einsum('ni,nj->nj', coef_1, point) -
               gs.einsum('ni,nj->nj', coef_2, base_point))

        mask_same_values = gs.isclose(point, base_point)

        mask_else = gs.equal(mask_same_values, gs.array(False))
        mask_else_float = gs.cast(mask_else, gs.float32)
        mask_else_float = gs.to_ndarray(mask_else_float, to_ndim=1)
        mask_else_float = gs.to_ndarray(mask_else_float, to_ndim=2)
        mask_not_same_points = gs.sum(mask_else_float, axis=1)
        mask_same_points = gs.isclose(mask_not_same_points, 0.)
        mask_same_points = gs.cast(mask_same_points, gs.float32)
        mask_same_points = gs.to_ndarray(mask_same_points, to_ndim=2, axis=1)

        mask_same_points_float = gs.cast(mask_same_points, gs.float32)

        log -= mask_same_points_float * log

        return log