Пример #1
0
def visualize(recs):
    '''
    Takes the direct output from calculation, maps the 3 recommendations
    based on their cuisine locations
    '''

    if recs != []:
        rv = []
        for idx, tup in enumerate(recs):
            lat, lon = tup[1]['coordinates']
            rv.append(["#" + str(idx + 1) + ". " + tup[1]['name'] + \
                            " (" + tup[1]['cuisine'] + ")", lat, lon])

        header = ['name', 'lat', 'lon']
        with open("form/static_files/img/visualization.csv", "w") as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow([h for h in header])
            writer.writerows(rv)

        data = geoplotlib.utils.read_csv(
            "form/static_files/img/visualization.csv")
        geoplotlib.dot(data)
        geoplotlib.labels(data, 'name', color=[0, 0, 255, 255], font_size=10, \
                                                         anchor_x='center')
        geoplotlib.savefig("form/static_files/img/visualization")
Пример #2
0
def geo_dot(file):      # file must have at top: name,lat,lon
    """
    Renders a geo dot graph
    :param file: path to file
    :return: saves image to temp/map.png
    """
    data = read_csv(file)
    geoplotlib.dot(data, point_size=3)
    # geoplotlib.show()
    geoplotlib.savefig('temp/map')
Пример #3
0
def geo_spatial(file):
    """
    Renders a geo spatial graph
    :param file: path to file
    :return: saves image to temp/spatial.png
    """
    data = read_csv(file)
    geoplotlib.graph(data, src_lat='lat_departure', src_lon='lon_departure', dest_lat='lat_arrival',
                     dest_lon='lon_arrival', color='hot_r', alpha=16, linewidth=2)
    # geoplotlib.show()
    geoplotlib.savefig('temp/spatial')
Пример #4
0
def makeMap(data):
    '''
    1. use Kmeans cluster lat and lon of each rsvp event
    2. plot them on a world map
    3. take a screenshot of the map and save
    '''
    geoplotlib.add_layer(KMeansLayer(data))
    geoplotlib.set_smoothing(True)
    geoplotlib.set_bbox(geoplotlib.utils.BoundingBox.WORLD)
    geoplotlib.savefig('clustermap')
    return None
Пример #5
0
def displayChargers(chargers, color="red", img_name="charging_points"):
    """ Puts the charging points in a map. Saves image to disk. """
    lats, lons, powers = [], [], []
    for center in chargers:
        for charger in center:
            lats.append(charger["coords"][0])
            lons.append(charger["coords"][1])
            powers.append(charger["power"])

    thedata = pd.DataFrame({"lat": lats, "lon": lons, "powers": powers})
    geoplotlib.dot(thedata, color=color)
    geoplotlib.savefig(img_name)
    return True
Пример #6
0
def _draw_hot(day, hour, minute):
    """
    geoplotlib热力图
    :param day:
    :param hour, minute:
    :param tp:
    :return:
    """

    data = da.loc_state(day, hour, minute)

    bbox1 = BoundingBox(north=32, south=30.7, west=122.2, east=120.8)

    gp.set_bbox(bbox1)

    # gp.shapefiles('F:\\road_datas\\ShangHai\\boundary', shape_type='empty')
    gp.kde(data, bw=[0.5, 0.5], cmap='jet', scaling='wjk')
    gp.savefig('001')
    gp.show()
Пример #7
0
def saveGeoData(dataFrame, feature, label, tag):
    plot_inc_d = {}
    for inc in dataFrame[feature].unique():
        accidents = dataFrame.loc[dataFrame[feature].isin([inc])]

        plot_inc = {}
        plot_inc = accidents[['LATITUDE', 'LONGITUDE']]
        plot_inc.columns = ['lat', 'lon']

        for col in plot_inc.columns:
            plot_inc_d[col] = plot_inc[col].tolist()

        # Plotting the data w. geoplotlib
        print label + ":", inc
        print "Samples:", len(accidents)
        gpl.kde(plot_inc_d, bw=1, cut_below=2e-4)
        gpl.set_bbox(
            BoundingBox(north=40.93, west=-73.85, south=40.53, east=-73.83))
        gpl.savefig('geo' + str(tag) + "_" + str(inc))
        plot_inc_d = {}
Пример #8
0
    def drawmap(self):
        """
        Multiple examples of kernel density estimation visualization
        """
        data = self.get_dao_object()
        # geoplotlib.kde(data, bw=5, cut_below=1e-4)

        # lowering clip_above changes the max value in the color scale
        # geoplotlib.kde(data, bw=5, cut_below=1e-4, clip_above=.1)

        # different bandwidths
        geoplotlib.kde(data, bw=20, cmap=self.cmap, cut_below=1e-4)
        # geoplotlib.kde(data, bw=2, cmap='PuBuGn', cut_below=1e-4)

        # linear colorscale
        # geoplotlib.kde(data, bw=5, cmap='jet', cut_below=1e-4, scaling='lin')

        geoplotlib.set_bbox(BoundingBox.from_nominatim('CHINA'))

        geoplotlib.savefig(self.ouput_filename)
Пример #9
0
 def plottrack(self, tailnum, airlinecode):
     frame = self.flightdata
     frame = frame[[
         'TAIL_NUM', 'OP_UNIQUE_CARRIER', 'FL_DATE', 'ORIGIN_AIRPORT_ID',
         'ORIGIN', 'CRS_DEP_TIME', 'DEST_AIRPORT_ID', 'DEST', 'CRS_ARR_TIME'
     ]]
     frame = frame.sort_values(['FL_DATE', 'CRS_DEP_TIME'],
                               ascending=True).groupby(
                                   ['TAIL_NUM', 'OP_UNIQUE_CARRIER'])
     alldata = frame.get_group(
         (tailnum, airlinecode)).reset_index().drop(columns=['index'])
     origin = alldata['ORIGIN']
     dest = alldata['DEST']
     mergedata_origin = pd.merge(origin,
                                 self.mapdata,
                                 left_on=['ORIGIN'],
                                 right_on=['name'],
                                 how='left')
     mergedata_origin = mergedata_origin.rename(columns={
         'lat': 'lat_ori',
         'lon': 'lon_ori'
     })
     mergedata_origin = mergedata_origin
     mergedata_dest = pd.merge(dest,
                               self.mapdata,
                               left_on=['DEST'],
                               right_on=['name'],
                               how='left')
     mergedata_dest = mergedata_dest.rename(columns={
         'lat': 'lat_dest',
         'lon': 'lon_dest'
     })
     mergedata_all = pd.concat([mergedata_origin, mergedata_dest], axis=1)
     geoplotlib.graph(mergedata_all,
                      src_lat='lat_ori',
                      src_lon='lon_ori',
                      dest_lat='lat_dest',
                      dest_lon='lon_dest',
                      color='Reds',
                      linewidth=2)
     geoplotlib.savefig(tailnum)
Пример #10
0
import geoplotlib
from pandasql import sqldf
import pandas as pd

df = pd.read_csv('data.csv')
destco = pd.read_csv('destination_latlong.csv')
orgco = pd.read_csv('origin_latlong.csv')
df['FL_DATE'] = pd.to_datetime(df['FL_DATE'], format='%Y-%m-%d')

airline = df.set_index('FL_DATE')

q = """
    SELECT A.ORIGIN_CITY_NAME,A.DEST_CITY_NAME,DC.lat As dlat,DC.lon as dlon,OC.lat As olat,OC.lon as olon FROM airline as A join destco as DC on A.DEST_CITY_NAME=DC.DEST_CITY_NAME join orgco as OC on A.ORIGIN_CITY_NAME=OC.ORIGIN_CITY_NAME WHERE DEP_DELAY=0 AND ARR_DELAY=0;
            
    """
print 'working..'
result = sqldf(q, locals())

geoplotlib.graph(result,
                 src_lat='olat',
                 src_lon='olon',
                 dest_lat='dlat',
                 dest_lon='dlon',
                 color='rainbow',
                 alpha=32,
                 linewidth=2)

geoplotlib.savefig('no delay')
Пример #11
0
#!/usr/bin/env python2
import geoplotlib
from geoplotlib.utils import read_csv, BoundingBox, DataAccessObject

data = read_csv('filtered_lonlat.csv')

# http://andreacuttone.com/geoplotlib/api.html#module-geoplotlib
geoplotlib.dot(data, color=[0,0,0], point_size=1.5)
geoplotlib.kde(data, bw=10, cmap='PuBuGn', cut_below=1e-4, clip_above=1e-2, alpha=180)
geoplotlib.graph(read_csv('group0.csvgraph.csv'), src_lat='flat', src_lon='flon',
        dest_lat='tlat', dest_lon='tlon', color=[0,0,0], linewidth=2)
geoplotlib.graph(read_csv('group1.csvgraph.csv'), src_lat='flat', src_lon='flon',
        dest_lat='tlat', dest_lon='tlon', color=[0,255,0], linewidth=2)
geoplotlib.graph(read_csv('group2.csvgraph.csv'), src_lat='flat', src_lon='flon',
        dest_lat='tlat', dest_lon='tlon', color=[128,0,128], linewidth=2)
geoplotlib.kde(read_csv('chokepoints.csv'), bw=10, cmap='hot',
        cut_below=1e-4, clip_above=1e-2, alpha=180)

bbox = BoundingBox(north=25.7188,west=-80.280,south=25.711,east=-80.280)
geoplotlib.set_bbox(bbox)
geoplotlib.set_window_size(1400, 1600)
#geoplotlib.set_window_size(700, 800)
geoplotlib.tiles_provider('toner')
geoplotlib.set_smoothing(True)
geoplotlib.savefig('output')
#geoplotlib.show()
Пример #12
0
data = crime_data_2017_DF.loc[crime_data_2017_DF['Resolved'] == 'Resolved',['Category','X','Y']]

data = data.rename(columns={"Category":"name",
                            "X":"lon",
                            "Y":"lat"})

data.to_csv("../data/GraphData_2017.csv", encoding="utf-8", index=False)
data.head()
data = read_csv('../data/GraphData_2017.csv')


# In[117]:


geoplotlib.dot(data)
geoplotlib.savefig('../plot/22.AllCrimes_2017')
#geoplotlib.show()


# # Map plot for Unresolved Arson : 2017 vs. 2016 (using Folium)

# In[118]:


crime_data_2016_unresolvedArson_DF = crime_data_2016_DF.loc[
    (crime_data_2016_DF['Resolved'] == 'Unresolved') & 
    (crime_data_2016_DF['Category'] == 'ARSON'), :]



crime_data_2017_unresolvedArson_DF = crime_data_2017_DF.loc[
Пример #13
0
"""
Multiple examples of kernel density estimation visualization
"""
import geoplotlib
from geoplotlib.utils import read_csv, BoundingBox, DataAccessObject

data = read_csv('data/opencellid_dk.csv')

#geoplotlib.kde(data, bw=5, cut_below=1e-4)

# lowering clip_above changes the max value in the color scale
#geoplotlib.kde(data, bw=5, cut_below=1e-4, clip_above=.1)

# different bandwidths
geoplotlib.kde(data, bw=20, cmap='OrRd', cut_below=1e-4)
#geoplotlib.kde(data, bw=2, cmap='PuBuGn', cut_below=1e-4)

# linear colorscale
#geoplotlib.kde(data, bw=5, cmap='jet', cut_below=1e-4, scaling='lin')

geoplotlib.set_bbox(BoundingBox.from_nominatim('CHINA'))

geoplotlib.savefig('full.png')
geoplotlib.show()